References
- Aperador, W., Mejia de Gutierrez, R. and Bastidas, D.M. (2009), "Steel corrosion behaviour in carbonated alkaliactivated slag concrete", Corros. Sci., 51, 2027-2033. https://doi.org/10.1016/j.corsci.2009.05.033
- ASTM C 876-91 (2009), Standard test method for half-cell potentials of uncoated reinforcing steel in concrete, ASTM, U.S.A.
- ASTM G1-03 (2009), Standard test practice for evaluating corrosion test, ASTM, U.S.A.
- Bertolini, L., Carsana, M. and Redaelli, E. (2008), "Conservation of historical reinforced concrete structures damaged by carbonation induced corrosion by means of electrochemical realkalisation", J. Cult. Herit., 9(4), 376-385. https://doi.org/10.1016/j.culher.2008.01.006
- Bertolini, L., Elsener, B., Pedeferri, P. and Podler, R. (2000), Corrosion of steel in concrete WiLey-VCH GmbH & Co. KGaA.
- Conciatori, D., Laferriere, F. and Brühwiler, E. (2009), "Comprehensive modeling of chloride ion and water ingress into concrete considering thermal and carbonation state for real climate", Cement Concrete Res. (in press)
- Cusack, N.E. (1987), The physics of structurally disordered matter, Bristol edition.
- Ehl, R.G. and Ihde, A.J. (1954). "Faraday's electrochemical laws and the determination of equivalent weights", J. Chem. Educat., 31, 226-232. https://doi.org/10.1021/ed031p226
- Farina, S.B. and Duffo, G.S. (2007), "Corrosion of zinc in simulated carbonated concrete pore solutions", Electrochimica Acta, 52(16), 5131-5139. https://doi.org/10.1016/j.electacta.2007.01.014
- Haber, F. and Klemensiewicz, Z. (1909), "Uber electrischie phasengrenzrafte", Phys. Chem., 67, 385.
- Hamada, M. (1969), "Concrete carbonation and steel corrosion", Cement Concrete, 272, 2-18.
- Hussain, R.R. and Ishida, T. (2007), "Modeling of corrosion in RC structures under variable chloride environment based on thermodynamic electro-chemical approach", J. SSMS, Japan, SMS07-106/2007, 3, 104-113. (Best paper award for the last four years 2005-2009. online: http://management.kochi-tech.ac.jp/society_approve.php)
- Ishida, T. and Maekawa, K. (2000), "An integrated computational system for mass/energy generation, transport, and mechanics of materials and structures", Concrete Library JSCE, 36, 129-144.
- Ishida, T. and Maekawa, K. (2000), "Modeling of pH profile in pore water based on mass transport and chemical equilibrium theory", Proceedings of JSCE, 648/V-47. (in Japanese)
- Kishi, T. and Maekawa, K. (1996), "Multi-component model for hydration heating of Portland cement", Concrete Library JSCE, 28, 97-115.
- Kobayashi, K. and Syutto, K. (1986), "Diffusivity of oxygen in cementitious materials", Concrete Eng., 24(12), 91-106. https://doi.org/10.3151/coj1975.24.12_91
- Kubo, J., Sawada, S., Page, C.L. and Page, M.M. (2007), "Electrochemical injection of organic corrosion inhibitors into carbonated cementitious materials: Part 2. Mathematical modeling", Corros. Sci., 49(3), 1205-1227. https://doi.org/10.1016/j.corsci.2006.06.015
- Kulakowski, M.P., Pereira, F.M. and Molin, D.C. (2009), "Carbonation-induced reinforcement corrosion in silica fume concrete", Constr. Build. Mater., 23(3), 1189-1195. https://doi.org/10.1016/j.conbuildmat.2008.08.005
- Kunii, T. and Hurusaki, S. (1980), The theory on transfer rate, Bai-hu Kan press.
- Kwon, S.J. and Song, H.W. (2010), "Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling", Cement Concrete Res., 40(1), 119-127. https://doi.org/10.1016/j.cemconres.2009.08.022
- Maekawa, K., Ishida, T. and Kishi, T. (2003), "Multi-scale modeling of concrete performance", J. Adv. Concrete Tech., 1(2), 91-126. https://doi.org/10.3151/jact.1.91
- Maekawa, K., Kishi, T. and Chaube, R.P. (1999), Modelling of concrete performance, E & FN SPON.
- Marques, P.F. and Costa, A. (2010), "Service life of RC structures: carbonation induced corrosion. prescriptive vs. performance-based methodologies", Constr. Build. Mater., 24(3), 258-265. https://doi.org/10.1016/j.conbuildmat.2009.08.039
-
Matsumoto, Y., Ueki, H., Yamasaki, T. and Murakami, M. (1998), "Model analysis on carbonation reaction with redissolution of
$CaCO_{3}$ ", JCI, 20(2), 961-966. - Nagataki, S., Ohga, H. and Saeki, T (1987), "Analytical prediction of carbonation depth", Ann. Report Cement Technol., 41, 343-346.
- Nernst, W.H. (1889), Nernst equation, Online: http://chem.ch.huji.ac.il/history/nernst_equation.htm, cited on 30th July, 2009.
- Osada, M., Ueki, H., Yamasaki, T. and Murakami, M. (1997), "Simulation analysis on carbonation reaction of concrete members taking alkali element into consideration", Proceedings of JCI, 19(1), 793-798.
- Papadakis, V.G., Vayenas, C.G. and Fardis, M.N. (1991), "Fundamental modeling and experimental investigation of concrete carbonation", ACI Mater. J., 88(4), 363-373.
- Pourbaix, M. (1963), Pourbaix diagrams, Online http://corrosion-doctors.org/Biographies/PourbaixBio.htm, cited on 30 July 2009.
- Saeki, T., Ohga, H. and Nagataki, S. (1991), "Mechanism of carbonation and prediction of carbonation process of concrete", Concrete Library JSCE, 17, 23-36.
- Saetta, A.V. and Vitaliani, R.V. (2005), "Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures: Part II. Practical applications", Cement Concrete Res., 35(5), 958-967.
- Saetta, A.V., Schrefler, B.A. and Vitaliani, R.V. (1993), "The carbonation of concrete and the mechanisms of moisture, heat and carbon dioxide flow through porous materials", Cement Concrete Res., 23, 761-772. https://doi.org/10.1016/0008-8846(93)90030-D
- Sakai, E. (1993), Carbonation reaction, Cement chemistry, 105-112, Japan Cement Association.
- Steffens, A. Dinkler, D. and Ahrens, H. (2002), "Modeling carbonation for corrosion risk prediction of concrete structures", Cement Concrete Res., 32(6), 935-941. https://doi.org/10.1016/S0008-8846(02)00728-7
- Tanano, H. and Masuda, Y. (1991), "Mathematical model on progress of carbonation of concrete", Proceedings of JCI, 13(1), 621-622.
- Uomoto, T. and Takada, Y. (1993), "Factors affecting concrete carbonation ratio", Concrete Library JSCE, 21, 31-44.
- Valcarce, M.B. and Vazquez, M. (2009), "Carbon steel passivity examined in solutions with a low degree of carbonation: the effect of chloride and nitrite ions", Mater. Chem. Phys., 115(1), 313-321. https://doi.org/10.1016/j.matchemphys.2008.12.007
- Vladimir, Z. (2003), "Corrosion of reinforcement induced by environment containing chloride and carbon dioxide", Bull. Mater. Sci., 26(6), 605-608. https://doi.org/10.1007/BF02704323
- Wang, J.H. and Copeland, E. (1973), "Equilibrium potentials of membrance electrodes", Proceedings of the national academy of sciences of the United States of America, 70(7), 1909-1911. https://doi.org/10.1073/pnas.70.7.1909
- Welty, J.R., Wicks, C.E. and Wilson, R.E. (1969), Fundamentals of momentum, heat, and mass transfer, John Wiley & Sons, Inc.
Cited by
- A reaction-diffusion modeling of carbonation process in self-compacting concrete vol.15, pp.5, 2015, https://doi.org/10.12989/cac.2015.15.5.847
- Computer based FEM stabilization of oxygen transport model for material and energy simulation in corroding reinforced concrete vol.12, pp.5, 2013, https://doi.org/10.12989/cac.2013.12.5.669
- Coupled effect of ambient high relative humidity and varying temperature marine environment on corrosion of reinforced concrete vol.28, pp.1, 2012, https://doi.org/10.1016/j.conbuildmat.2011.10.008