References
- ASCE-ACI Committee 445 on shear and Torsion (1998), "Recent approaches to shear design of structural concrete", J. Struct. Eng. - ASCE, 124(12), 1375-1417. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1375)
- ANSYS R9.0. (2004), Swanson Analyses System.
- Bali, I. and Hwang, S.J. (2007), "Strength and deflection prediction of double-curvature reinforced concrete squat walls", Struct. Eng. Mech., 27(4), 501-521. https://doi.org/10.12989/sem.2007.27.4.501
- Belarbi, A. and Hsu, T.T.C. (1995), "Constitutive laws of softened concrete in biaxial tension compression", ACI Struct. J., 92(5), 562-573.
- Cervenka, J., Bazant, Z.P. and Wierer, M. (2005), "Equivalent localization element for crack band approach to mesh-sensitivity in microplane model", Int. J. Numer. Method. Eng., 62(5), 700-726. https://doi.org/10.1002/nme.1216
- Chen, W.F. (1982), Plasticity in reinforced concrete, McGraw-Hill Book Co., New York.
- Drucker, D.C. and Prager, W. (1952), "Soil mechanics and plastic analysis or limit design", Q. Appl. Math., 10(2), 157-165. https://doi.org/10.1090/qam/48291
- Duffey, T.A., Farrar, C.R. and Goldman, A. (1994), "Low-rise shear wall ultimate drift limits", Earthq. Spectra., 10(4), 655-674. https://doi.org/10.1193/1.1585792
- Jirasek, M. and Bazant, Z.P. (2001), Inelastic analysis of structures, Wiley, Newyork.
- Hemmaty, Y. (1998), "Modeling of the shear force transferred between cracks in reinforced and fiber reinforced concrete structures", ANSYS Conference, Pittsburg, PA.
- Kazaz, I., Yakut, A. and Gulkan, P. (2006), "Numerical simulation of dynamic shear wall tests: a benchmark study", Comput. Struct., 84(8), 549-562. https://doi.org/10.1016/j.compstruc.2005.11.002
- Kupfer, H., Hilsdorf, H.K. and Rüsch, H. (1969), "Behavior of concrete under biaxial stress", ACI Struct. J., 66(8), 656-666.
- Kwan, W.P. and Billington, S.L. (2001), "Simulation of structural concrete under cyclic load", J. Struct. Eng. - ASCE, 127(12), 1391-1401. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:12(1391)
- Maekawa, K., Pimanmas, A. and Okamura, H. (2003), Nonlinear mechanics of reinforced concrete, Spon press, Newyork.
- Mirmiran, A., Zagers, K. and Yuan, W. (2000), "Nonlinear finite element modeling of concrete confined by fiber composites", Finite Elem. Anal. Des., 35(1), 79-96. https://doi.org/10.1016/S0168-874X(99)00056-6
- OECD/NEA/CSNI. (1996), Seismic shear wall ISP NUPEC's seismic ultimate dynamic response test - Comparison Report, NEA/CSNI/R(96)10, OECD/GD(96)188.
- Padmarajaiah, S.K. and Ramaswamy, A. (2002), "A finite element assessment of flexural strength of prestressed concrete beams with fiber reinforcement", Cement Concrete Comp., 24(2), 229-241. https://doi.org/10.1016/S0958-9465(01)00040-3
- Ramaswamy, A., Barzegar, F. and Voyiadjis, G.Z. (1994), "A post-cracking formulation for finite element analysis of RC structures based on secant stiffness", J. Eng. Mech. - ASCE, 120(12), 2621-2640. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:12(2621)
- Shayanfar, M.A. and Safiey, A. (2008), "Hypoelastic modeling of reinforced concrete walls", Comput. Concrete, 5(3), 195-216. https://doi.org/10.12989/cac.2008.5.3.195
- Swamy, R.N. and Qureshi, S.A. (1974), "An ultimate shear strength theory for reinforced concrete T-beams without web reinforcement", Mater. Constr., 7(39), 181-189. https://doi.org/10.1007/BF02473833
- Thomas, J. and Ramaswamy, A (2006), "Finite element analysis of shear critical prestressed SFRC beams", Comput. Concrete, 3(1), 65-77. https://doi.org/10.12989/cac.2006.3.1.065
- Vecchio, F.J. and Collins, M.P. (1986), "Modified compression-field theory for reinforced concrete elements subjected to shear", ACI Struct. J., 83(2), 219-231.
- Vecchio, F.J. and Collins, M.P. (1993), "Compression response of cracked reinforced concrete", J. Struct. Eng. - ASCE, 119(12), 3590-3610. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3590)
- von Mises, R. (1928), "Mechanik der plastischen Formänderung von Kristallen", Z. Angrew. Math. Mech., 8(3), 161-185. https://doi.org/10.1002/zamm.19280080302
- Willam, K.J. and Warnke, E.D. (1975), "Constitutive model for the triaxial behavior of concrete", Int. Assoc. Bridge Struct. Eng. Proc., 19, 174-203.
- Yin, W.S., Su, E.C.M., Mansur, M.A. and Hsu, T.T.C. (1987), "Response of plain concrete to cyclic tension", ACI Mater. J., 84(5), 365-373.
Cited by
- Analytical Study on Plastic Hinge Length of Structural Walls vol.139, pp.11, 2013, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000770
- Modelling dowel action of discrete reinforcing bars for finite element analysis of concrete structures vol.12, pp.1, 2013, https://doi.org/10.12989/cac.2013.12.1.019
- Structural analysis of a prestressed segmented girder using contact elements in ANSYS vol.20, pp.3, 2017, https://doi.org/10.12989/cac.2017.20.3.319
- Evaluation of constitutive relations for concrete modeling based on an incremental theory of elastic strain-hardening plasticity vol.22, pp.2, 2011, https://doi.org/10.12989/cac.2018.22.2.227
- Numerical simulation of the constructive steps of a cable-stayed bridge using ANSYS vol.69, pp.3, 2011, https://doi.org/10.12989/sem.2019.69.3.269