참고문헌
- Abramovich, H. and Hamburger, O. (1991), "Vibration of a cantilever timoshenko beam with a tip mass", J. Sound Vib.,148(1), 162-170. https://doi.org/10.1016/0022-460X(91)90828-8
- Adhikari, S. (1999a), "Modal analysis of linear asymmetric non-conservative systems", J. Eng. Mech.- ASCE., 125(12), 1372-1379. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:12(1372)
- Adhikari, S. (1999b), "Rates of change of eigenvalues and eigenvectors in damped dynamic systems", J. AIAA, 37(11), 1452-1458. https://doi.org/10.2514/2.622
- Adhikari, S. (2004), "Optimal complex modes and an index of damping non-proportionality", Mech. Syst. Signal Pr.,18(1), 1-27. https://doi.org/10.1016/S0888-3270(03)00048-7
- Adhikari, S. and Bhattacharya, S. (2008), "Dynamic instability of pile-supported structures in liquefiable soils during earthquakes", Shock Vib., 15(6), 665-685. https://doi.org/10.1155/2008/149031
- Adhikari, S. and Bhattacharya, S. (2011), "Dynamic analysis of wind turbine towers on flexible foundations", Shock Vib.
- Baguelin F., Frank R., S. Y. (1977), "Theoretical study of lateral reaction mechanism of piles", Geotechnique, 27, 405-434. https://doi.org/10.1680/geot.1977.27.3.405
- Bhattacharya, S., Adhikari, S. and Alexander, N. A. (2009), "A simplied method for unied buckling and dynamic analysis of pile-supported structures in seismically liquefiable soils", Soil Dyn. Earthq. Eng., 29(8), 1220- 1235. https://doi.org/10.1016/j.soildyn.2009.01.006
- Bhattacharya, S., Carrington, T. and Aldridge, T. (2009), "Observed increases in offshore pile driving resistance", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 162(1), 71-80.
- Bhattacharya, S., Dash, S.R. and Adhikari, S. (2008), "On the mechanics of failure of pile-supported structures in liqueable deposits during earthquakes", Current Science, 94(5), 605-611.
- Blevins, R.D. (1984), Formulas for Natural Frequency and Mode Shape, Krieger Publishing Company, Malabar, FL, USA.
- Byrne, B. and Houlsby, G. (2003), "Foundations for offshore wind turbine", Philos. T. R. Soc. A., 361.
- Chen, Y. (1963), "On the vibration of beams or rods carrying a concentrated mass", J. Appl. Mech -T. ASME., 30, 310-311. https://doi.org/10.1115/1.3636537
- Dash, S.R., Govindaraju, L. and Bhattacharya, S. (2009), "A case study of damages of the Kandla Port and Customs Office tower supported on a mat-pile foundation in liquefied soils under the 2001 Bhuj earthquake", Soil Dyn. Earthq. Eng., 29(2), 333-346. https://doi.org/10.1016/j.soildyn.2008.03.004
- DnV (2001), Guidelines for design of wind turbines-DnV/Riso, Code of practice, DnV, USA.
- Elishakoff, I. and Johnson, V. (2005), "Apparently the first closed-form solution of vibrating inhomogeneous beam with a tip mass", J. Sound Vib., 286(4-5), 1057-1066. https://doi.org/10.1016/j.jsv.2005.01.050
- Elishakoff, I. and Perez, A. (2005), "Design of a polynomially inhomogeneous bar with a tip mass for specied mode shape and natural frequency", J. Sound Vib., 287(4-5), 1004-1012. https://doi.org/10.1016/j.jsv.2005.02.043
- GHBLADED (2009), Wind Turbine Design Software, Garrad Hassan Limited, Bristol, UK.
- Gurgoze, M. (2005a), "On the eigenfrequencies of a cantilever beam carrying a tip spring-mass system with mass of the helical spring considered, J. Sound Vib., 282(3-5), 1221-1230. https://doi.org/10.1016/j.jsv.2004.04.020
- Gurgoze, M. (2005b), "On the representation of a cantilevered beam carrying a tip mass by an equivalent springmass system", J. Sound Vib., 282, 538-542. https://doi.org/10.1016/j.jsv.2004.04.006
- Gurgoze, M. and Erol, H. (2002), "On the frequency response function of a damped cantilever simply supported in-span and carrying a tip mass", J. Sound Vib., 255(3), 489-500. https://doi.org/10.1006/jsvi.2001.4118
- Hetenyi, M. (1946), "Beams on Elastic Foundation: Theory with Applications in the Fields of Civil and Mechanical Engineering", University of Michigan Press, Ann Arbor, MI USA.
- Huang, T.C. (1961), "The effect of rotatory inertia and of shear deformation on the frequency and normal mode equations of uniform beams with simple end conditions", J. Appl. Mech - T. ASME., 28, 579-584. https://doi.org/10.1115/1.3641787
- IEA (2005), International Energy Statistics 2005: Key World Energy Statistics, International Energy Agency, Paris, France.
- Kreyszig, E. (2006), Advanced engineering mathematics, 9th Edition., John Wiley & Sons, New York.
- Laura, P.A.A. and Gutierrez, R.H. (1986), "Vibrations of an elastically restrained cantilever beam of varying cross-section with tip mass of finite length", J. Sound Vib., 108(1), 123-131. https://doi.org/10.1016/S0022-460X(86)80316-9
- Oz, H.R. (2003), "Natural frequencies of an immersed beam carrying a tip mass with rotatory inertia", J. Sound Vib., 266(5), 1099-1108. https://doi.org/10.1016/S0022-460X(03)00052-X
- Randolph, M.F. and Steward, D.P. (1999), Manual for the program PYGM , University of Western Australia, Australia.
- SAMTECH (2009), SAMCEF for Wind Turbine (S4WT), SAMTECT s.a., Liege, Belgium.
- Sheu, G. and Yang, S. (2005), "Dynamic analysis of a spinning rayleigh beam", Int. J. Mech. Sci., 47(2), 157- 169. https://doi.org/10.1016/j.ijmecsci.2005.01.007
- Tempel, D.P. and Molenaar, D.P. (2002), "Wind turbine structural dynamics -a review of the principles for modern power generation, onshore and offshore", Wind Eng., 26(4), 211-220. https://doi.org/10.1260/030952402321039412
- Wu, J.S. and Chou, H.M. (1998), "Free vibration analysis of a cantilever beam carrying any number of elastically mounted point masses with the analytical-and-numerical-combined method", J. Sound Vib., 213(2), 317-332. https://doi.org/10.1006/jsvi.1997.1501
- Wu, J.S. and Chou, H.M. (1999), "A new approach for determining the natural frequencies and mode shapes of a uniform beam carrying any number of sprung masses", J. Sound Vib., 220(3), 451- 468. https://doi.org/10.1006/jsvi.1998.1958
- Wu, J.S. and Hsu, S.H. (2006), "A unified approach for the free vibration analysis of an elastically supported immersed uniform beam carrying an eccentric tip mass with rotary inertia", J. Sound Vib., 291(3-5), 1122- 1147. https://doi.org/10.1016/j.jsv.2005.07.032
- Zaaijer, M. (2006), "Foundation modelling to assess dynamic behaviour of offshore wind turbines", Appl. Ocean Res., 28, 45-57. https://doi.org/10.1016/j.apor.2006.03.004
피인용 문헌
- Dynamics of offshore wind turbines supported on two foundations vol.166, pp.2, 2013, https://doi.org/10.1680/geng.11.00015
- Dynamic soil–structure interaction of monopile supported wind turbines in cohesive soil vol.49, 2013, https://doi.org/10.1016/j.soildyn.2013.01.015
- Similitude relationships for physical modelling of monopile-supported offshore wind turbines vol.11, pp.2, 2011, https://doi.org/10.1680/ijpmg.2011.11.2.58
- Mitigating the structural vibrations of wind turbines using tuned liquid column damper considering soil-structure interaction vol.120, 2018, https://doi.org/10.1016/j.renene.2017.12.090
- Structural monitoring of a wind turbine steel tower - Part II: monitoring results vol.15, pp.4, 2012, https://doi.org/10.12989/was.2012.15.4.301
- Development of a rig to study model pile behaviour under repeating lateral loads vol.14, pp.3, 2014, https://doi.org/10.1680/ijpmg.13.00015
- Natural frequency of bottom-fixed offshore wind turbines considering pile-soil-interaction with material uncertainties and scouring depth vol.21, pp.6, 2015, https://doi.org/10.12989/was.2015.21.6.625
- On the 3D Rayleigh wave field on an elastic half-space subject to tangential surface loads vol.95, pp.12, 2015, https://doi.org/10.1002/zamm.201400211
- Stochastic response of jacket supported offshore wind turbines for varying soil parameters vol.101, 2017, https://doi.org/10.1016/j.renene.2016.09.019
- Closed form solution of Eigen frequency of monopile supported offshore wind turbines in deeper waters incorporating stiffness of substructure and SSI vol.83, 2016, https://doi.org/10.1016/j.soildyn.2015.12.011
- Bearing behavior of multiple piles for offshore wind driven generator vol.129, 2017, https://doi.org/10.1016/j.oceaneng.2016.10.038
- Numerical investigation on effects of rotor control strategy and wind data on optimal wind turbine blade shape vol.18, pp.2, 2014, https://doi.org/10.12989/was.2014.18.2.195
- Structural monitoring of a wind turbine steel tower - Part I: system description and calibration vol.15, pp.4, 2012, https://doi.org/10.12989/was.2012.15.4.285
- Vertical earthquake response of megawatt-sized wind turbine with soil-structure interaction effects vol.44, pp.13, 2015, https://doi.org/10.1002/eqe.2590
- Soil–Structure Interactions for Offshore Wind Turbines vol.1, pp.1, 2012, https://doi.org/10.1049/etr.2016.0019
- Static impedance functions for monopiles supporting offshore wind turbines in nonhomogeneous soils-emphasis on soil/monopile interface characteristics vol.10, pp.5, 2016, https://doi.org/10.12989/eas.2016.10.5.1143
- Centrifuge modeling to evaluate natural frequency and seismic behavior of offshore wind turbine considering SFSI vol.20, pp.10, 2017, https://doi.org/10.1002/we.2127
- Dynamic characterisation of wind turbine towers account for a monopile foundation and different soil conditions vol.13, pp.7, 2017, https://doi.org/10.1080/15732479.2016.1227342
- An innovative cyclic loading device to study long term performance of offshore wind turbines vol.82, 2016, https://doi.org/10.1016/j.soildyn.2015.12.008
- Monopile head stiffness for servicibility limit state calculations in assessing the natural frequency of offshore wind turbines 2017, https://doi.org/10.1080/19386362.2016.1270794
- Winkler Springs (p-y curves) for pile design from stress-strain of soils: FE assessment of scaling coefficients using the Mobilized Strength Design concept vol.5, pp.5, 2013, https://doi.org/10.12989/gae.2013.5.5.379
- Coupled hydrodynamic and geotechnical analysis of jacket offshore wind turbine vol.73, 2015, https://doi.org/10.1016/j.soildyn.2015.03.002
- Observed dynamic soil–structure interaction in scale testing of offshore wind turbine foundations vol.54, 2013, https://doi.org/10.1016/j.soildyn.2013.07.012
- Parametric investigation of the soil-structure interaction effects on the dynamic behaviour of a shallow foundation supported wind turbine considering a layered soil vol.18, pp.3, 2015, https://doi.org/10.1002/we.1703
- Reducing monopile rotation under lateral loading in sandy soils vol.12, pp.1, 2017, https://doi.org/10.1080/17486025.2016.1153730
- Reliability analysis of laterally loaded piles for an offshore wind turbine support structure using response surface methodology vol.21, pp.6, 2015, https://doi.org/10.12989/was.2015.21.6.597
- Piled-cruciform attachment to monopile head reduces deflection vol.169, pp.4, 2016, https://doi.org/10.1680/jgeen.15.00001
- Design of monopiles for offshore wind turbines in 10 steps vol.92, 2017, https://doi.org/10.1016/j.soildyn.2016.09.024
- An analytical model to predict the natural frequency of offshore wind turbines on three-spring flexible foundations using two different beam models vol.74, 2015, https://doi.org/10.1016/j.soildyn.2015.03.007
- Centrifuge study on the cyclic performance of caissons in sand vol.14, pp.4, 2014, https://doi.org/10.1680/ijpmg.14.00016
- Natural frequency of offshore wind turbines on rigid and flexible monopiles in cohesionless soils with linear stiffness distribution vol.68, 2017, https://doi.org/10.1016/j.apor.2017.07.009
- Evaluation of full scale shear performance of tension anchor foundations: Load displacement curves and failure criteria vol.131, 2017, https://doi.org/10.1016/j.oceaneng.2016.12.033
- Simplified critical mudline bending moment spectra of offshore wind turbine support structures vol.18, pp.12, 2015, https://doi.org/10.1002/we.1812
- Uncertain boundary condition Bayesian identification from experimental data: A case study on a cantilever beam vol.68-69, 2016, https://doi.org/10.1016/j.ymssp.2015.08.010
- A simplified method for analyzing the fundamental frequency of monopile supported offshore wind turbine system design vol.17, pp.4, 2018, https://doi.org/10.1007/s11803-018-0482-5
- Curves vol.18, pp.11, 2018, https://doi.org/10.1061/(ASCE)GM.1943-5622.0001204
- Influence of soil-structure interaction on seismic responses of offshore wind turbine considering earthquake incident angle vol.13, pp.1, 2011, https://doi.org/10.12989/eas.2017.13.1.039
- Analytical solution for natural frequency of monopile supported wind turbine towers vol.25, pp.5, 2011, https://doi.org/10.12989/was.2017.25.5.459
- Wind-induced responses of supertall buildings considering soil-structure interaction vol.27, pp.4, 2011, https://doi.org/10.12989/was.2018.27.4.223
- Dynamic analysis of a monopile supported wind turbine considering experimental p-y curves vol.15, pp.6, 2011, https://doi.org/10.1080/17445302.2019.1665910
- Experimental Study on Whole Wind Power Structure with Innovative Open-Ended Pile Foundation under Long-Term Horizontal Loading vol.20, pp.18, 2020, https://doi.org/10.3390/s20185348
- An Accurate Estimation of the Eigenfrequency of an Offshore Wind Turbine Considered as the Stepped Euler-Bernoulli Beam in Three-Spring Flexible Foundation Using the Power Series Method vol.2021, pp.None, 2011, https://doi.org/10.1155/2021/9643553
- Multi-body dynamic analysis of offshore wind turbine considering soil-structure interaction for fatigue design of monopile vol.144, pp.None, 2011, https://doi.org/10.1016/j.soildyn.2021.106674
- Establishing Regional Power Sustainability and Feasibility Using Wind Farm Land-Use Optimization vol.10, pp.5, 2011, https://doi.org/10.3390/land10050442
- Physical Modelling of Offshore Wind Turbine Foundations for TRL (Technology Readiness Level) Studies vol.9, pp.6, 2011, https://doi.org/10.3390/jmse9060589
- Detection and Localization of Multiple Damages through Entropy in Information Theory vol.11, pp.13, 2011, https://doi.org/10.3390/app11135773
- Three-dimensional modeling of monopiles in sand subjected to lateral loading under static and cyclic conditions vol.26, pp.2, 2011, https://doi.org/10.12989/gae.2021.26.2.175
- The effect of the TMD on the vibration of an offshore wind turbine considering three soil-pile-interaction models vol.24, pp.12, 2021, https://doi.org/10.1177/13694332211008316
- Influence of the Flexible Tower on Aeroelastic Loads of the Wind Turbine vol.11, pp.19, 2011, https://doi.org/10.3390/app11198876
- Amplitude resonance response and feedback control of cantilever beams with tip-mass under aerodynamic load vol.96, pp.12, 2011, https://doi.org/10.1088/1402-4896/ac3d49
- Long term effect of operating loads on large monopile-supported offshore wind turbines in sand vol.245, pp.None, 2022, https://doi.org/10.1016/j.oceaneng.2021.110404