참고문헌
- AIJ (1996), AIJ recommendations for loads on buildings (in English), Architectural Institute of Japan, Tokyo.
- American Society of Civil Engineers (ASCE) (2006), Minimum design loads for buildings and other structures, ASCE/SEI 7-05, Reston, Virginia, USA.
- Arya, S.P. (1999), Air pollution meteorology and dispersion, Oxford University Press, USA.
- Arya, S.P. (2001), Introduction to Micrometeorology, 2nd Ed., Academic Press, New York.
- Balendra, T., Shah, D.A., Tey, K.L. and Kong, S.K. (2002), "Evaluation of flow characteristics in the NUS-HDB wind tunnel", J. Wind Eng. Ind. Aerod., 90(6), 675-688. https://doi.org/10.1016/S0167-6105(01)00223-9
- Bendat, J.S. and Piersol, A.G. (2000), Random data: analysis and measurement procedures, John Wiley & Sons, New York.
- Blocken, B., Stathopoulos, T. and Carmeliet, J. (2007), "CFD simulation of the atmospheric boundary layer: wall function problems", Atmos. Environ., 41(2), 238-252. https://doi.org/10.1016/j.atmosenv.2006.08.019
- Blocken, B., Stathopoulos, T., Saathoff, P. and Wang, X. (2008), "Numerical evaluation of pollutant dispersion in the built environment: Comparisons between models and experiments", J. Wind Eng. Ind. Aerod., 96(10-11), 1817-1831. https://doi.org/10.1016/j.jweia.2008.02.049
- Cermak, J.E., Cochran, L.S. and Leffler, R.D. (1995), "Wind-tunnel modeling of the atmospheric surface-layer", J. Wind Eng. Ind. Aerod., 54, 505-513.
- Cook, N.J. (1978), "Determination of the model scale factor in wind-tunnel simulations of the adiabatic atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 2(4), 311-321. https://doi.org/10.1016/0167-6105(78)90016-8
- Counihan, J. (1969a), "A method of simulating a neutral atmospheric boundary layer in a wind tunnel", Proceedings of the Advisory Group for Aerospace Research and Development (AGARD) Conference.
- Counihan, J. (1969b), "An improved method of simulating an atmospheric boundary layer in a wind tunnel", Atmos. Environ., 3(2), 197-214. https://doi.org/10.1016/0004-6981(69)90008-0
- Counihan, J. (1971), "Wind tunnel determination of roughness length as a function of fetch and roughness density of 3-dimensional roughness elements", Atmos. Environ., 5(8), 637-642. https://doi.org/10.1016/0004-6981(71)90120-X
- Counihan, J. (1973), "Simulation of an adiabatic urban boundary-layer in a wind-tunnel", Atmos. Environ., 7(7), 673-689. https://doi.org/10.1016/0004-6981(73)90150-9
- Counihan, J. (1975), "Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880-1972", Atmos. Environ., 9(10), 871-905. https://doi.org/10.1016/0004-6981(75)90088-8
- Dyrbye, C. and Hansen, S.O. (1997), Wind loads on structures, John Wiley & Sons, New York.
- ESDU 72026 (1972), Characteristics of wind speed in the lower layers of the atmosphere near the ground: strong winds (neutral atmosphere), Engineering Sciences Data Unit.
- ESDU 74031 (1974), Characteristics of atmospheric turbulence near the ground, Part II: Single point data for strong winds (neutral atmosphere), Engineering Sciences Data Unit.
- ESDU 85020 (1985), Characteristics of atmospheric turbulence near the ground: Part II: single point data for strong winds (neutral atmosphere), Engineering Sciences Data Unit.
- EN 1991 Eurocode 1 (2005), Actions on structures — General actions — Part 1-4: Wind actions.
- Fang, C. and Sill, B.L. (1992), "Aerodynamic roughness length - correlation with roughness elements", J. Wind Eng. Ind. Aerod., 41(1-3), 449-460. https://doi.org/10.1016/0167-6105(92)90444-F
- Farell, C. and Iyengar, A.K.S. (1999), "Experiments on the wind tunnel simulation of atmospheric boundary layers", J. Wind Eng. Ind. Aerod., 79(1-2), 11-35. https://doi.org/10.1016/S0167-6105(98)00117-2
- Flay, R.G.J. and Stevenson, D.C. (1988), "Integral length scales in strong winds below 20-m", J. Wind. Eng. Ind. Aerod., 28(1-3), 21-30. https://doi.org/10.1016/0167-6105(88)90098-0
- Gartshore, I.S. and De Croos, K.A. (1977), "Roughness element geometry required for wind tunnel simulations of the atmospheric wind", J. Fluid Eng.-T. ASME, 99(3), 480-485. https://doi.org/10.1115/1.3448821
- Hargreaves, D.M. and Wright, N.G. (2007), "On the use of the k-epsilon model in commercial CFD software to model the neutral atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 95(5), 355-369. https://doi.org/10.1016/j.jweia.2006.08.002
- Harris, R.I. (1986), "Longer turbulence length scales", J. Wind Eng. Ind. Aerod., 24(1), 61-68. https://doi.org/10.1016/0167-6105(86)90072-3
- Holmes, J.D. (2007), Wind loading of structures, 2nd Ed., Routledge, Taylor & Francis, UK
- Holmes, J.D., Baker, C.J., English, E.C. and Choi, E.C.C. (2005), "Wind structure and codification", Wind Struct., 8(4), 235-250. https://doi.org/10.12989/was.2005.8.4.235
- Hucho, W.H. (2002), Aerodynamik der stumpfen Korper, Vieweg & Sohn, Wiesbaden.
- Hunt, A. (1982), "Wind-tunnel measurements of surface pressures on cubic building models at several scales", J. Wind Eng. Ind. Aerod., 10(2), 137-163. https://doi.org/10.1016/0167-6105(82)90061-7
- ISO 4354 (1997), Wind actions on structures, International Standard Organization.
- Kolmogorov, A.N. (1941), "The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers", Proceedings of the USSR Academy of Sciences, 30, 299-303.
- Kozmar, H. (2008), "Influence of spacing between buildings on wind characteristics above rural and suburban areas", Wind Struct., 11(5), 413-426. https://doi.org/10.12989/was.2008.11.5.413
- Kozmar, H. (2009), "Natural wind simulation in the TUM boundary layer wind tunnel", Proceedings of the 5th European-African Conference on Wind Engineering, Florence, Italy, July.
- Kozmar, H. (2010), "Scale effects in wind tunnel modeling of an urban atmospheric boundary layer", Theor. Appl. Climatol., 100(1-2), 153-162. https://doi.org/10.1007/s00704-009-0156-3
- Kozmar, H., Džijan, I. and Šavar, M. (2005), "Uniformity of atmospheric boundary layer model in the wind tunnel (in Croatian)", Strojarstvo, 47(5-6), 157-167.
- Lim, H.C., Castro, I.P. and Hoxey, R.P. (2007), "Bluff bodies in deep turbulent boundary layers: Reynoldsnumber issues", J. Fluid Mech., 571, 97-118. https://doi.org/10.1017/S0022112006003223
- Melbourne, W.H. (1979), "Turbulence effects on maximum surface pressures-a mechanism and possibility of reduction", Proceedings of the 5th International Conference on Wind Engineering, Fort Collins, CO, USA, July.
- Pernpeintner, A., Schnabel, P., Schuler, A. and Theurer, W. (1995), Appendix 17: Qualifizierungsversuch, WTGMerkblatt uber Windkanalversuche in der Gebäudeaerodynamik, (Ed. Plate E.J.), WTG-Berichte Nr. 3, Windtechnologische Gesellschaft WTG e.V.
- Peterka, J.A., Hosoya, N., Dodge, S., Cochran, L. and Cermak, J.E. (1998), "Area-average peak pressures in a gable roof vortex region", J. Wind Eng. Ind. Aerod., 77-78(1), 205-215. https://doi.org/10.1016/S0167-6105(98)00144-5
- Plate, E.J. (1982), Wind tunnel modelling of wind effects in engineering, Engineering Meteorology, Elsevier Scientific Publishing Company, Amsterdam, New York.
- Schlichting, H. and Gersten, K. (1997), Grenzschicht-Theorie, 9th Ed., Springer, Berlin.
- Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures, 3rd Ed., John Wiley & Sons, New York.
- Sockel, H. (1984), Aerodynamik der Bauwerke, Vieweg & Sohn, Braunschweig.
- Stathopoulos, T. and Surry, D. (1983), "Scale effects in wind-tunnel testing of low buildings", J. Wind Eng. Ind. Aerod., 13(1-3), 313-326. https://doi.org/10.1016/0167-6105(83)90152-6
- Stull, R.B. (2003), An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht.
- Tamura, Y., Iwatani, Y., Hibi, K., Suda, K., Nakamura, O., Maruyama, T. and Ishibashi, R. (2007), "Profiles of mean wind speeds and vertical turbulence intensities measured at seashore and two inland sites using Doppler sodars", J. Wind Eng. Ind. Aerod., 95(6), 411-427. https://doi.org/10.1016/j.jweia.2006.08.005
- Tieleman, H.W. (1990), "Wind-tunnel simulation of the turbulence in the surface-layer", J. Wind Eng. Ind. Aerod., 36, 1309-1318. https://doi.org/10.1016/0167-6105(90)90127-X
- Tieleman, H.W. (2003), "Wind-tunnel simulation of wind loading on low-rise structures: a review", J. Wind Eng. Ind. Aerod., 91(12-15), 1627-1649. https://doi.org/10.1016/j.jweia.2003.09.021
- Von Karman, T. (1948), "Progress in the statistical theory of turbulence", Proc. Natl. Acad. Sci. USA, 34(11), 530-539. https://doi.org/10.1073/pnas.34.11.530
- Wang, Z.Y., Plate, E.J., Rau, M. and Keiser, R. (1996), "Scale effects in wind tunnel modelling", J. Wind Eng. Ind. Aerod., 61(2-3), 113-130. https://doi.org/10.1016/0167-6105(96)00049-9
- Yang, Y., Gu, M., Chen, S.Q. and Jin, X.Y. (2009), "New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering", J. Wind Eng. Ind. Aerod., 97(2), 88-95. https://doi.org/10.1016/j.jweia.2008.12.001
피인용 문헌
- Surface pressure distribution on patterned cylinders under simulated atmospheric boundary layer winds vol.27, pp.1, 2018, https://doi.org/10.1002/tal.1404
- Calculated external pressure coefficients on livestock buildings and comparison with Eurocode 1 vol.15, pp.6, 2012, https://doi.org/10.12989/was.2012.15.6.481
- Complex terrain effects on wake characteristics of a parked wind turbine vol.110, 2016, https://doi.org/10.1016/j.engstruct.2015.11.033
- Verification of a tree canopy model and an example of its application in wind environment optimization vol.15, pp.5, 2012, https://doi.org/10.12989/was.2012.15.5.409
- Physical modeling of complex airflows developing above rural terrains vol.12, pp.3, 2012, https://doi.org/10.1007/s10652-011-9224-1
- A combination method to generate fluctuating boundary conditions for large eddy simulation vol.20, pp.4, 2015, https://doi.org/10.12989/was.2015.20.4.579
- Truncated vortex generators for part-depth wind-tunnel simulations of the atmospheric boundary layer flow vol.99, pp.2-3, 2011, https://doi.org/10.1016/j.jweia.2010.11.001
- Atmospheric boundary layer simulation in a new open-jet facility at LSU: CFD and experimental investigations vol.110, 2017, https://doi.org/10.1016/j.measurement.2017.06.027
- Steady RANS model of the homogeneous atmospheric boundary layer vol.173, 2018, https://doi.org/10.1016/j.jweia.2017.12.006
- Atmospheric boundary-layer simulation for the built environment: Past, present and future vol.75, 2014, https://doi.org/10.1016/j.buildenv.2014.02.004
- Designing laboratory wind simulations using artificial neural networks vol.120, pp.3-4, 2015, https://doi.org/10.1007/s00704-014-1201-4
- Computational modeling of the atmospheric boundary layer using various two-equation turbulence models vol.19, pp.6, 2014, https://doi.org/10.12989/was.2014.19.6.687
- Computational modeling of the neutrally stratified atmospheric boundary layer flow using the standard k–ε turbulence model vol.115, 2013, https://doi.org/10.1016/j.jweia.2013.01.011
- Flow and Turbulence Control in a Boundary Layer Wind Tunnel Using Passive Hardware Devices vol.41, pp.6, 2017, https://doi.org/10.1007/s40799-017-0196-z
- Numerical simulation of wind loading on roadside noise mitigation structures vol.17, pp.3, 2013, https://doi.org/10.12989/was.2013.17.3.299
- Simplified elements for wind-tunnel measurements with type-III-terrain atmospheric boundary layer vol.91, 2016, https://doi.org/10.1016/j.measurement.2016.05.078
- Simplified Wind Flow Model for the Estimation of Aerodynamic Effects on Small Structures vol.139, pp.3, 2013, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000508
- Improved Experimental Simulation of Wind Characteristics around Tall Buildings vol.25, pp.4, 2012, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000167
- Characteristics of natural wind simulations in the TUM boundary layer wind tunnel vol.106, pp.1-2, 2011, https://doi.org/10.1007/s00704-011-0417-9
- COMPARISON OF TESTING RESULTS OF THREE POORLY STREAMLINED ENTERTAINMENT VENUES / TRIJŲ SUDĖTINGO PAVIDALO PRAMOGINIŲ STATINIŲ MAKETŲ BANDYMŲ REZULTATŲ GRETINIM vol.18, pp.2, 2011, https://doi.org/10.3846/13923730.2012.672455
- An approach to simulate wind fields around an urban environment for wind energy application vol.13, pp.1, 2011, https://doi.org/10.1007/s10652-012-9258-z
- Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-ω model vol.24, pp.5, 2011, https://doi.org/10.12989/was.2017.24.5.465