References
- Abramovich, H. and Pletner, B. (1997), "Actuation and sensing of piezolaminated sandwich type structures", Compos. Struct., 38(1-4), 17-27. https://doi.org/10.1016/S0263-8223(97)00037-8
- Akella, P., Chen, X., Cheng, W., Hughes, D. and Wen, J.T. (1994), "Modeling and control of smart structures with bonded piezoelectric sensors and actuators", Smart Mater. Struct., 3, 344-353. https://doi.org/10.1088/0964-1726/3/3/010
- Alberada, A., Gonnard, P., Perrin, V., Briot, R. and Guyomar, D. (2000), "Characterization of the mechanical non-linear behavior of piezoelectric ceramics", IEEE T. Ultrason. Ferr., 47(4), 844-53. https://doi.org/10.1109/58.852066
- Alkhatib, R. and Golnaraghi, M.F. (2003), "Active structural vibration control: A review", Shock Vib., 35(5), 367-383. https://doi.org/10.1177/05831024030355002
- Allik, H. and Hughes, J.R. (1970), "Finite element method for piezoelectric vibration", Int. J. Numer. Meth. Eng., 2(2), 151-157. https://doi.org/10.1002/nme.1620020202
- Alzahrani, B.A. and Alghamdi, A.A.A. (2003), "Review of the mechanics of materials models for onedimensional surface-bonded piezoelectric actuators", Smart Mater. Struct., 12(3).
- Amant, Y.S. and Cheng, L. (2000), "Simulations and experiments on active vibration control of a plate with integrated piezoceramics", Thin Wall. Struct., 38(2), 105-123. https://doi.org/10.1016/S0263-8231(00)00034-3
- Anderson, E.H., Hagood, N. and Goodlife, J (1992), "Self-sensing piezoelectric actuation : analysis and application to controlled structures", Proceedings of the AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 33rd, Dallas, TX, UNITED STATES, April.
- Aoki, Y., Gardonio, P and Elliott, S.J. (2008), "Modeling of a piezoceramic patch actuator for velocity feedback control", Smart Mater. Struct., 17(1).
- Apte, D.A. and Gauguli, R. (2009), "Influence of temperature and high electric field on power consumption by piezoelectric actuated integrated structure", CMC (Tech Science Press), 329(1), 1-23.
- Bailey, T. and Hubbard, J.E. Jr. (1985), "Distributed piezoelectric-polymer active vibration control of a cantilevered beam", J. Guid. Control Dynam., 8, 605-11. https://doi.org/10.2514/3.20029
- Balamurugan, V. and Narayanan, S. (2001), "Active vibration control of smart shells using distributed piezoelectric sensors and actuators", Smart Mater. Struct., 10, 173-180. https://doi.org/10.1088/0964-1726/10/2/301
- Bao, Y., Tzou, H.S. and Venkayya, V.B. (1998), "Analysis of non-linear piezothermoelastic laminated beam with electric and temperature effects", J. Sound Vib., 209(3), 505-18. https://doi.org/10.1006/jsvi.1997.1265
- Barlas, T.K. and van Kuik, G.A.M. (2010), "Review of state of the art in smart rotor control research for wind turbines", Prog. Aeros. Sci., 46(1), 1-27. https://doi.org/10.1016/j.paerosci.2009.08.002
- Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements-the use of mixed interpolation of tensorial components", Int. J. Numer. Meth. Eng., 22(3), 697-722. https://doi.org/10.1002/nme.1620220312
- Bathe, K.J. (1996), Finite element procedures in engineering analysis, Prentice-Hall, Englewood Cliffs, NJ.
- Baz, A. and Poh, S. (1988), "Performance of an active control system with piezoelectric actuators", J. Sound Vib., 126(2), 327-343. https://doi.org/10.1016/0022-460X(88)90245-3
- Baz, A. (2000), "Spectral finite-element modeling of the longitudinal wave propagation in rods treated with active constrained layer damping", Smart Mater. Struct., 9(3), 372-377. https://doi.org/10.1088/0964-1726/9/3/319
- Benjeddou, A. (2000), "Advances in piezoelectric finite element modeling of adaptive structural elements: a survey", Comput. Struct., 76, 347-363. https://doi.org/10.1016/S0045-7949(99)00151-0
- Benjeddou, A., Trindade, M.A. and Ohayon, R. (2000), "Piezoelectric actuation mechanisms for intelligent sandwich structures", Smart Mater. Struct., 9(3), 328-335. https://doi.org/10.1088/0964-1726/9/3/313
- Benjeddou, A. (2009), "New insights in piezoelectric free-vibrations using simplified modeling and analyses", Smart Struct. Syst., 5(6), 591-612. https://doi.org/10.12989/sss.2009.5.6.591
- Birman, V. (1996), "Thermal effects on measurements of dynamic processes in composite structures using piezoelectric sensors", Smart Mater. Struct., 5(4), 379-385. https://doi.org/10.1088/0964-1726/5/4/001
- Blanguernon, A. et al. (1999), "Active control of a beam using a piezoceramic element", Smart Mater. Struct., 8(1), 116-124. https://doi.org/10.1088/0964-1726/8/1/013
- Brennan, M.J. and Ferguson, N.S. (2004), Vibration control: Advanced application in acoustics, noise and vibration, Spon, London.
- Bronowicki, A.J., McIntyre, L.J., Betros, R.S. and Dvorsky, G.R. (1996), "Mechanical validation of smart structures", Smart Mater. Struct., 5(2), 129-139. https://doi.org/10.1088/0964-1726/5/2/003
- Bruant, I., Coffignal, G., Lene, F and Verge, M. (2001), "Active control of beam structures with piezoelectric actuators and sensors: modeling and simulation", Smart Mater. Struct., 10(2), 404-408. https://doi.org/10.1088/0964-1726/10/2/402
- Cady, W.G. (1964), Piezoelectricity (Vol. I), Dover ,New York.
- Chandrashekhara, K. and Agarwal, A.N. (1993), "Active vibration control of laminated composite plates using piezoelectric devices: a finite element approach", J. Intell. Mater. Syst. Struct., 4(4), 496-508. https://doi.org/10.1177/1045389X9300400409
- Chandrashekhara, K. and Tanneti, R. (1995), "Thermally induced vibration suppression of laminated plates with piezoelectric sensors and actuators", Smart Mater. Struct., 4(4), 281-290. https://doi.org/10.1088/0964-1726/4/4/008
- Chen, W. and Cheung, Y.K. (1992), "Three dimensional 8-node and 20-node refined hybrid isoparametric elements", Int. J. Numer. Meth. Eng., 35(9), 11871-11889.
- Chen, S.H., Wang, Z.D. and Liu, X.H. (1997), "Active vibration control and suppression for intelligent structures", J. Sound Vib., 200(2), 167-177. https://doi.org/10.1006/jsvi.1996.0694
- Chen, C.Q. and Shen, Y.P. (1997), "Optimal control of active structures with piezoelectric modal sensors and actuators", Smart Mater. Struct., 6(4), 403-409. https://doi.org/10.1088/0964-1726/6/4/003
- Choi, S.B., Cheong C.C and Shin H.C. (1995), "Sliding mode control of vibration in a single-link flexible arm with parameter variations", J. Sound Vib., 179, 737-748. https://doi.org/10.1006/jsvi.1995.0049
- Crawley, E. and de Luis, J. (1987), "Use of piezoelectric actuators as elements of intelligent structures", AIAA J., 25, 1373-1385. https://doi.org/10.2514/3.9792
- Dhuri, K.D. and Sheshu, P. (2007), "Favorable locations for piezo actuator in plates with good control effectiveness and minimal change in system dynamics", Smart Mater. Struct., 16(6), 2526-2542. https://doi.org/10.1088/0964-1726/16/6/057
- Dimitriadis, E.K., Fuller, C.R. and Rogers, C.A. (1991), "Piezoeletric actuators for distributed vibration excitation of thin plates", J. Vib. Acoust., 113(1), 100-107. https://doi.org/10.1115/1.2930143
- Dosch, J.J., Inman, D.J. and Garcia, E. (1992), "A self-sensing piezoelectric actuator for collocated control", J. Intell. Mater. Syst. Struct., 3(1), 166-84. https://doi.org/10.1177/1045389X9200300109
- Elsoufi, L., Khalil, K., Lacha, R. and Charon, W. (2007), "Modeling the thermal behavior of PZT patches during the manufacturing process of smart thermoplastic structures", Smart Mater. Struct., 16(4), 1076-1082. https://doi.org/10.1088/0964-1726/16/4/016
- Fabunni, J.A. (1980), "Forced vibration of single stage axial compressor rotor", J. Eng. Power, 102, 322-328. https://doi.org/10.1115/1.3230255
- Fahy, F.J. and Walker, J.G. (1998), Fundamentals of noise and vibration control, Spon, London.
- Fleming, A.J. and Moheimani, S.O.R. (2004), "Improved current and charge amplifiers for driving piezoelectric loads, and issues in signal processing design for synthesis of shunt damping circuits", J. Intell. Mater. Syst. Struct., 15(2), 77-92. https://doi.org/10.1177/1045389X04039701
- Fripp, M.L. and Atalla, M.J. (2001), "Review of modal sensing and actuation techniques", Shock Vib., 33(1), 3-14. https://doi.org/10.1177/058310240103300101
- Friswell, M. I., Inman, D.J. and Rietz, R.W. (1997), "Active damping of thermally induced vibrations", J. Intell. Mater. Syst. Struct., 8, 678-685. https://doi.org/10.1177/1045389X9700800805
- Friswell, M.I. and Inman, D.J. (1999), " The relationship between positive position feedback and output feedback controllers", Smart Mater. Struct., 8(3), 285-291. https://doi.org/10.1088/0964-1726/8/3/301
- Fuller, C.R., Elliott, S. and Nelson, P.A. (1997), The active control of vibration, Academic, New York.
- Garcia, J.E. et al. (2001), "High electric field measurement of dielectric constant and losses of ferroelectric ceramics", J. Phys. D. Appl. Phys., 34(22), 3279-3284. https://doi.org/10.1088/0022-3727/34/22/312
- Ge, P. and Jouaneh, M. (1996), "Tracking control of a piezoceramic actuator", IEEE T. Contr. Syst. T., 4(3), 209-216. https://doi.org/10.1109/87.491195
- Geradin, M. and Rixen, D. (1993), Theories des vibrations-Application a la Dynamique des Structures, Mason, Paris.
- Ghandi, K. and Hagood, N.W. (1997), "A hybrid finite element model for phase transitions in non-linear electromechanically coupled material", Proceedings of the SPIE Smart Structures and Materials-1997: Mathematics and control in smart structures.
- Giannopoulos, G. and Vantomme, J. (2006), "A thermal-electrical-mechanical coupled FE formulation using discrete layer kinematics for the dynamic analysis of smart plates", Smart Mater. Struct., 15(6), 1846-1857. https://doi.org/10.1088/0964-1726/15/6/039
- Glynne-Jones, P., Beeby, S.P. and White, N.M. (2001), "A method to determine the ageing rate of thick-film PZT layers", Smart Mater. Struct., 12(6), 663-670.
- Gopal, M. (2008), Digital control and state variable methods, 3rd Ed., Tata McGraw Hill: New Delhi.
- Gornandt, A. and Gabbert, U. (2002), "Finite element analysis of thermopiezoelectric smart structures", Acta Mech., 154(1-4), 129-140. https://doi.org/10.1007/BF01170703
- Griffiths, D.J. (1999), Introduction to electrodynamics, 3rd Ed., Prentice Hall.
- Gupta, Vivek et al. (2010), "Optimization criteria for optimal placement of piezoelectric sensors & actuators on a smart structure: A technical review", J. Intell. Mater. Syst. Struct., 21(12), 1227-1243. https://doi.org/10.1177/1045389X10381659
- Guyan, R.J. (1965), "Reduction of stiffness and mass matrices", AIAA J., 3(2), 380. https://doi.org/10.2514/3.2874
- Ha, S.K., Keilers, C. and Chang, F.K. (1992), "Finite element analysis of composite structures containing distributed piezoelectric sensors and actuators", AIAA J., 30(3), 772-780. https://doi.org/10.2514/3.10984
- Han, J.H., Rew, K.H. and Lee, I. (1997), "An experimental study of active vibration control of composite structures with a piezoceramic actuator and a piezo-film sensor", Smart Mater. Struct., 6(5), 549-558. https://doi.org/10.1088/0964-1726/6/5/006
- Han, J.H. and Lee, In (1998), "Analysis of composite plates with piezoelectric actuators for vibration control using layerwise displacement theory", Compos. Part B - Eng, 29(B), 621-632. https://doi.org/10.1016/S1359-8368(98)00027-4
- Han, J.H., Cho, K.D., Youn, S.H. and Lee, In "Vibration and actuation characteristics of composite structures with a bonded piezoceramic actuator", Smart Mater. Struct., 8(1), 136-143. https://doi.org/10.1088/0964-1726/8/1/015
- Hanagud, S., Obal, M.W. and Meyyappa, M. (1985), "Electronic damping techniques and active vibration control", AIAA paper, 85-0752, 443-453.
- Huang, D. and Sun, B. (2001), "Approximate analytical solutions of smart composite Mindlin beams", J. Sound Vib., 244(3), 379-394. https://doi.org/10.1006/jsvi.2000.3475
- Huang, D.J., Ding, H.J. and Chen, W.Q. (2007), "Piezoelasticity solutions for functionally graded piezoelectric beams", Smart Mater. Struct., 16(3), 687-695. https://doi.org/10.1088/0964-1726/16/3/015
- Hwang, W.S. and Park, H.C. (1993), "Finite element modeling of piezoelectric sensors and actuators", AIAA J., 31(5), 930-937. https://doi.org/10.2514/3.11707
- Jaffe, B., Cook, W.R. and Jaffe, H.L. (1971), Piezoelectric Ceramics, Academic, London.
- Jiang, J. P. and Li, Dong Xu (2007), "A new finite element model for piezothermoelastic composite beam", J. Sound Vib., 306(3-5), 849-864. https://doi.org/10.1016/j.jsv.2007.06.023
- Jiang, J.P. and Li, Dong Xu (2008), "Finite element formulations for thermopiezoelastic laminated composite plates", Smart Mater. Struct., 17(1).
- Joshi, S. et el (2003), "Numerical characterization of functionally graded active materials under electrical and thermal fields", Smart Mater. Struct., 12(4), 571-579. https://doi.org/10.1088/0964-1726/12/4/309
- Kandagal, S.B. and Venkatraman, K. (2006), "Piezo-actua ted vibration and flutter control", Defence Sci. J., 56(4), 615-626. https://doi.org/10.14429/dsj.56.1927
- Kar, I.N, Seto, K. and Doi, F. (2002), "Multimode vibration control of a flexible structure using H based control", IEEE Transactions on Mechatronics, 5(1), 23-30.
- Karagulle, H , Malgaca, L.and Oktem, H.F. (2004), "Analysis of active vibration control in smart structures by ANSYS", Smart Mater. Struct., 13(4), 661-667. https://doi.org/10.1088/0964-1726/13/4/003
- Kargarnovin, M.H., Najafizadeh, M.M and Viliani. N.S. (2007), "Vibration control of a functionally graded material plate patched with piezoelectric actuators and sensors under a constant electric charge", Smart Mater. Struct., 16, 1252-1259. https://doi.org/10.1088/0964-1726/16/4/037
- Kim, Y.S. and Wang, K.W. (1993), "On the sliding mode control of structural vibrations via variable damping", Mech. Syst. Signal Pr., 7(4), 335-347. https://doi.org/10.1006/mssp.1993.1019
- Kim, J., Varadan, V.V., Varadan, V.K. and Bao, X.Q. et al. (1996), "Finite element modeling of smart cantilevered plate and comparison with experiments", Smart Mater. Struct., 5(2), 165-170. https://doi.org/10.1088/0964-1726/5/2/005
- Kim et al. (1997), "Finite element modeling of structures with piezoelectric active devices", Int. J. Numer. Meth. Eng., 40, 817-832. https://doi.org/10.1002/(SICI)1097-0207(19970315)40:5<817::AID-NME90>3.0.CO;2-B
- Kumar, R. and Singh, S.P. (2006), "Adaptive hybrid control of smart structures subjected to multiple disturbances", Smart Mater. Struct., 15(5), 1345-1357. https://doi.org/10.1088/0964-1726/15/5/024
- Kumar, R. and Khan, M. (2007), "Pole placement techniques for active vibration control of smart structures: A feasibility study", J. Vib. Acoust., 129(5), 601-615. https://doi.org/10.1115/1.2748474
- Kumar, R., Mishra, B.K. and Jain, S.C. (2008), "Thermally induced vibration control of cylindrical shell using piezoelectric sensor and actuator", Int. J. Adv. Manuf Tech., 38(5-6), 551-562. https://doi.org/10.1007/s00170-007-1076-y
- Lahtinen, R., Muukkonen, T., Koskinen, J, Hannula, S.P. and Heczko, O. (2007), "A piezopaint-based sensor for monitoring structure dynamics", Smart Mater. Struct., 16, 2571-2576. https://doi.org/10.1088/0964-1726/16/6/061
- Lee, C.K. and Moon F.C. (1990), "Modal sensors/actuators", J. Appl. Mech -T ASME., 57(2), 434-41. https://doi.org/10.1115/1.2892008
- Lee, C.K., Chiang, W.W. and O'Sullivan, T.C. (1991), "Piezoelectric modal sensor/actuator pairs for critical active damping vibration control", J. Acoust. Soc. Am., 90(1), 374-384. https://doi.org/10.1121/1.401260
- Lee, Y.Y. and Yao, J. (2003), "Structural vibration suppression using the piezoelectric sensors and actuators", J. Vib. Acoust., 125(1), 109-113. https://doi.org/10.1115/1.1523891
- Li, Y.Y., Cheng, L. and Li, P. (2003), "Modeling and vibration control of a plate coupled with piezoelectric material", Compos. Struct., 62(2), 155-162. https://doi.org/10.1016/S0263-8223(03)00110-7
- Li, F.X., Rajapakse, R.K.N.D., Mumford, D. and Gadala, M. (2008), "Quasi-static thermo-electro-mechanical behavior of piezoelectric stack actuators", Smart Mater. Struct., 17(1), 015049(10pp). https://doi.org/10.1088/0964-1726/17/1/015049
- Lim, Y.H., Gopinathan, S.V., Varadan, V.V. and Varadan V.K. (1999), "Finite element simulation of smart structures using an optimal output feedback controller for vibration and noise control", Smart Mater. Struct, 8(3), 324-337. https://doi.org/10.1088/0964-1726/8/3/305
- Lin, C.C. and Huang, H.N. (1999), "Vibration control of beam-plates with bonded piezoelectric sensors and actuators", Comput. Struct., 73(1-5), 239-248. https://doi.org/10.1016/S0045-7949(98)00280-6
- Loewy, R.G. (1997), "Recent developments in smart structures with aeronautical applications", Smart Mater. Struct., 6(5).
- Luck, R., Langley-Turnbaugh S.J., Bockheim J.G. and Agba E.I. (1998), "On the design of piezoelectric sensors and actuators", ISA Transactions, 37(1), 65-72. https://doi.org/10.1016/S0019-0578(98)00007-X
- MacNeal, R.H. (1987), "A theorem regarding locking of tapered four-node membrane elements", Int. J. Numer. Meth. Eng., 24(9), 1793-1799. https://doi.org/10.1002/nme.1620240913
- Malgaca, L. and Karagulle, H. (2009), "Simulation and experimental analysis of active vibration control of smart beams under harmonic excitation", Smart Struct. Syst., 5(1), 55-68. https://doi.org/10.12989/sss.2009.5.1.055
- Manna, M.C., Sheikh, A.H. and Bhattacharyya, R. (2009), "Static analysis of rubber components with piezoelectric patches using nonlinear finite element", Smart Struct. Syst., 5(1), 23-42. https://doi.org/10.12989/sss.2009.5.1.023
- Manning, W.J., Plummer, A.M. and Levesley, M.C. (2000), "Vibration control of a flexible beam with integrated actuators and sensors", Smart Mater. Struct., 9(6), 932-939. https://doi.org/10.1088/0964-1726/9/6/325
- Marinkovic, D., Koppe, H. and Gabbert, U. (2007), "Accurate modeling of the electric field within piezoelectric layers for active composite structures", J. Intell. Mater. Syst. Struct., 18(5), 503-513. https://doi.org/10.1177/1045389X06067139
- Masys, A.J., Ren, W., Yang, G and Mukherjee, B.K. (2003), "Piezoelectric strain in lead zirconate titanate ceramics as a function of electric field, frequency and dc bias", J. Appl. Phys., 94(2), 1155-1162. https://doi.org/10.1063/1.1587008
- Meirovitch, L. and Baruh, H. (1983), "A comparison of control techniques for large flexible systems", J. Guid. Control Dynam., 6(4), 302-310. https://doi.org/10.2514/3.19833
- Meirovitch, L. (1988), Control of distributed systems Large space structures: Dynamics and control, Springer, Berlin.
- Meirovitch, L. (1989), Dynamics and control of structures, John Wiley & Sons.
- Miller, S.E., Abramovich H. and Oshman Y. (1995), "Active distributed vibration control of anisotropic piezoelectric laminated plates", J. Sound. Vib., 183(5), 797-817. https://doi.org/10.1006/jsvi.1995.0287
- Mindlin, R.D. (1961), On the equations of motion of piezoelectric crystals N.I. Muskhelishvili 70th Birthday Volume 282-290.
- Mindlin, R.D. (1974), "Equations of high frequency vibrations of thermopiezoelecric crystal plates", Int. J. Solids Struct., 10(6), 625-637. https://doi.org/10.1016/0020-7683(74)90047-X
- Mirzaeifar, R., Bahai, H. and Shahab, S. (2008), "Active control of natural frequencies of FGM plates by piezoelectric sensor/actuator pairs", Smart Mater. Struct., 17(4), 045003 (8pp). https://doi.org/10.1088/0964-1726/17/4/045003
- Mitchell, J.A. and Reddy, J.N. (1995), "A refined plate theory for composite laminates with piezoelectric laminae", Int. J. Solids Struct., 32(16), 2345-2367. https://doi.org/10.1016/0020-7683(94)00229-P
- Moheimani, S.O.R. and Fleming, A.J. (2006), Piezoelectric transducers for vibration control and damping (Advances in industrial control), Springer-Verlag London.
- Narayanan, S. and Balamurugan, V. (2003), "Finite element modeling of piezolaminated smart structures for active vibration control with distributed sensors and actuators", J. Sound Vib., 262(3), 529-562. https://doi.org/10.1016/S0022-460X(03)00110-X
- Niezrecki, C., Brei, D., Balakrishnan, S. and Moskalik, A. (2001), "Piezoelectric actuation: state of the art", Shock Vib., 33(4), 269-280. https://doi.org/10.1177/058310240103300401
- Nowacki, W. (1978), "Some general theorems of thermopiezoelectricity", J. Therm. Stresses, 1(2), 171-82. https://doi.org/10.1080/01495737808926940
- Nowacki, J.P. (1982), "Steady state problems of thermopiezoelectricity", J. Therm. Stresses, 5, 183-194. https://doi.org/10.1080/01495738208942144
- Ochoa, O.O. and Reddy, J.N. (1992), Finite element analysis of composite laminates, Kluwer Academic.
- Oh, Jinho et al. (2007), "Enhanced lower-order shear deformation theory for fully coupled electro-thermomechanical smart laminated plates", Smart Mater. Struct., 16, 2229-2241. https://doi.org/10.1088/0964-1726/16/6/026
- Park, C.H. and Baz A. (1999), "Vibration damping and control using active constrained layer damping: A survey", Shock Vib. 31(5), 355-364. https://doi.org/10.1177/058310249903100501
- Perez, R., Albareda, A., Garcia, J.E., Tiana, J., Ringgaard, E. and Wolny, W.W. (2004), "Extrinsic contribution to the non-linearity in a PZT disc", Smart Mater. Struct., 37(19), 2648-2654.
- Perry, M.A., Bates, R.A., Atherton, M.A. and Wynn, H.P. (2008), "A finite-element-based formulation for sensitivity studies of piezoelectric systems", Smart Mater. Struct., 17(1), 015015 (7pp). https://doi.org/10.1088/0964-1726/17/01/015015
- Petyt, Maurice (1990), Introduction to finite element vibration analysis, Cambridge University Press.
- Piersol, A.G. and Paez, T.L. (2010), Harri's shock and vibration handbook, 6th Ed., Tata McGraw Hill.
- Proulx, B. and Cheng, L. (2000), "Dynamic analysis of piezoceramic actuation effects on plate vibrations", Thin Wall. Struct., 37(2), 147-162. https://doi.org/10.1016/S0263-8231(00)00013-6
- Raja, S., Rohwer, K. and Rose, M. (1999), "Piezothermoelastic modeling and active vibration control of laminated composite beams", J. Intell. Mater. Syst. Struct., 10(11), 890-899. https://doi.org/10.1106/GPPM-H4FU-8WUE-G63K
- Raja, S., Prathap, J. and Sinha, P.K. (2002), "Active vibration control of composite sandwich beams with piezoelectric extensionbending and shear actuators", Smart Mater. Struct., 11(1), 63-71. https://doi.org/10.1088/0964-1726/11/1/307
- Raja, S., Sinha, P.K., Prathap, G. and Prathap, D. (2004), "Thermally induced vibration control of composite plates and shells with piezoelectric active damping", Smart Mater. Struct., 13(3), 939-950. https://doi.org/10.1088/0964-1726/13/4/032
- Rao, S.S. and Sunar, M. (1993), "Analysis of distributed thermopiezoelectric sensors and actuators in advanced intelligent structures", AIAA J., 31(7), 1280-86. https://doi.org/10.2514/3.11764
- Rao, S.S. and Sunar, M. (1994), "Piezoelectricity and its use in disturbance sensing and control of flexible structures: a survey", Appl. Mech. Rev., 47(4), 113-123. https://doi.org/10.1115/1.3111074
- Rao, V., Damle, R., Tebbe, C. and Kern, F. (1994), "The adaptive control of smart structures using neural networks", Smart Mater. Struct, 3(3), 354-366. https://doi.org/10.1088/0964-1726/3/3/011
- Reaves, C.M. and Horta, L.G. (2003), "Piezoelectric actuator modeling using MSC/NASTRAN and MATLAB", NASA/TM-2003-212651.
- Reddy, J.N. (2005), An introduction to the finite element method , 3rd Ed., Tata McGaw-Hill Publishing.
- Robbins, D.H. and Reddy, J.N. (1991), "Analysis of piezoelecrically actuated beams using a layer-wise displacement theory", Comput. Struct., 41(2), 265-279. https://doi.org/10.1016/0045-7949(91)90430-T
- Roy, T. and Chakraborty, D. (2009), "Genetic algorithm based optimal control of smart composite shell structures under mechanical loading and thermal gradient", Smart Mater. Struct., 18(11), 115006(12pp). https://doi.org/10.1088/0964-1726/18/11/115006
- Sadri, A.M., Wright, J.R. and Wynne, R.J. (1999), "Modeling and optimal placement of piezoelectric actuators in isotropic plates using genetic algorithms", Smart Mater. Struct., 8(4), 490-498. https://doi.org/10.1088/0964-1726/8/4/306
- Saravanos, D.A. and Heylinger, P.R. (1999), "Mechanics and computational models for laminated piezoelectric beams, plates and shells", Appl. Mech. Rev., 52(10), 305-20. https://doi.org/10.1115/1.3098918
- Schulz, M.J., Sundaresan, M.J., Mcmichael, J., Clayton, D., Sadler, R. and Nagel, B. (2003), "Piezoelectric materials at elevated temperatures", J. Intell. Mater. Sys. Struct., 14(11), 693-705. https://doi.org/10.1177/1045389X03038577
- Shaik Dawood, M.S.I., Iannucci, L. and Greenhalgh, E.S. (2008), "Three-dimensional static shape control analysis of composite plates using distributed piezoelectric actuators", Smart Mater. Struct., 17(2), 025002 (10pp). https://doi.org/10.1088/0964-1726/17/2/025002
- Sharma, M., Singh, S.P. and Sachdeva, B.L. (2005), "Fuzzy logic based modal space control of a cantilevered beam instrumented with piezoelectric patches", Smart Mater. Struct., 14(5), 1017-1024. https://doi.org/10.1088/0964-1726/14/5/040
- Sharma, M., Singh, S.P. and Sachdeva, B.L. (2007), "Modal control of a plate using fuzzy logic controller", Smart Mater. Struct., 16(4), 1331-1341. https://doi.org/10.1088/0964-1726/16/4/047
- Simmers Jr. G.E., Hodgkins, J.R., Mascarenas, D.D., Park, G. and Sohn, H. (2004), "Improved piezoelectric self-sensing actuation", J. Intell. Mater. Sys. Struct., 15(12), 941-953. https://doi.org/10.1177/1045389X04046308
- Simmers Jr. G.E., Sodano, H.A, Gyuhae, Park and Inman D.J. (2007), "Thermal protection for a self-sensing piezoelectric control system", Smart Mater. Struct., 16(6), 2492-2500. https://doi.org/10.1088/0964-1726/16/6/053
- Simo, J.C. and Armero, F. (1992), "Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes", Int. J. Numer. Meth. Eng., 33(7), 1413-49. https://doi.org/10.1002/nme.1620330705
- Singh, S.P., Pruthi, H.S. and Agarwal, V.P. (2003), "Efficient modal control strategies for active control of vibrations", J. Sound. Vib., 262(3), 563-575. https://doi.org/10.1016/S0022-460X(03)00111-1
- Smittakorn, W. and Heyliger, P.R. (2000), "A discrete-layer model of laminated hygrothermopiezoelectric plates", Mech. Compos. Mater. 7(1), 79-104.
- Smyser, C.P. and Chandershekhara, K. (1997), "Robust vibration control of composite beams using piezoelectric devices and neural networks", Smart Mater. Struct, 6(2), 178-189. https://doi.org/10.1088/0964-1726/6/2/007
- Stolarski, H.S. (1991), "On a formulation of the quadrilateral with highly accurate in-plane bending behavior", First U.S. National Congress on Computational Mechanics, Chicago.
- Sun, C.T. and Zhang, X.D. (1995), "Use of thickness shear mode in adaptive sandwich structures", Smart Mater. Struct., 4(3), 202-206. https://doi.org/10.1088/0964-1726/4/3/007
- Sunar, M. and Rao, S.S. (1992), "Distributed thermopiezoelectric sensors and actuators in structural design", Proceedings of the 33rd AIAA-ASME-ACSE-AHS-ASC Structures, Structural Dyn and Mat Conf.
- Sunar, M. and Rao, S.S. (1997), "Thermopiezoelectric control design and actuator placement", AIAA J., 35(3), 534-539. https://doi.org/10.2514/2.127
- Sunar, M. and Rao, S.S. (1999), "Recent advances in sensing and control of flexible structures via piezoelectric materials", Appl. Mech. Rev. 52, 1-16. https://doi.org/10.1115/1.3098923
- Sze, K.Y. and Pan, Y.S. (1999), "Hybrid finite element models for piezoelectric materials", J. Sound. Vib., 226(3), 519-547. https://doi.org/10.1006/jsvi.1999.2308
- Sze, K.Y. (2000), "On immunizing five-beta hybrid stress elements from "trapezoidal locking" in practical analysis", Int. J. Numer. Meth. Eng., 47, 907-920. https://doi.org/10.1002/(SICI)1097-0207(20000210)47:4<907::AID-NME808>3.0.CO;2-A
- Sze, K.Y. and Yao, L.Q. (2000a), "A hybrid stress ANS solid shell elements and its generalization to smart structure modeling", Int. J. Numer. Meth. Eng., 48(4), 545-582. https://doi.org/10.1002/(SICI)1097-0207(20000610)48:4<545::AID-NME889>3.0.CO;2-6
- Sze, K.Y. and Yao, L.Q. (2000b), "Modeling smart structures with segmented piezoelectric sensors and actuators", J. Sound. Vib., 235(3), 495-520. https://doi.org/10.1006/jsvi.2000.2944
- Tauchert, T.R., Ashida, F, Noda, N., Adali, S. and Verijenko, V. (2000), "Developments in thermopiezoelasticity with relevance to smart composite structures", Compos. Struct., 48(1-3), 31-38. https://doi.org/10.1016/S0263-8223(99)00070-7
- Tiersten, H.F. (1971), "On the nonlinear equations of thermoelectroelasticity", Int. J. Eng. Sci. 9(7), 587-604 https://doi.org/10.1016/0020-7225(71)90062-0
- Tzou, H.S. and Tseng, C.I. (1991), "Distributed vibration control and identification of coupled elastic/piezoelectric systems: Finite element formulation and application", Mech. Syst. Signal Pr., 5(3), 215-231. https://doi.org/10.1016/0888-3270(91)90044-6
- Tzou, H.S. and Ye, R. (1993), "Piezothermoelasticity and control of piezoelectric laminates exposed to a steady state temperature field", ASME Intell. Struct. Mat. Vib., 58, 27-34.
- Tzou, H.S. and Hollkamp, J.J. (1994), "Collocated independent modal control with self-sensing orthogonal piezoelectric actuators (theory and experiment)", Smart Mater. Struct., 3(3), 277-284. https://doi.org/10.1088/0964-1726/3/3/003
- Tzou, H.S. and Fu, H.Q. (1994), "A study of segmentation of distributed piezoelectric sensors and actuators Part I:Theoretical analysis", J. Sound. Vib., 172(2), 247-259. https://doi.org/10.1006/jsvi.1994.1172
- Tzou, H.S. and Howard, R.V. (1994), "A piezothermoelastic shell theory applied to active structure", ASME T. J. Vib. Acoust., 116, 295-302. https://doi.org/10.1115/1.2930428
- Tzou, H.S. and Ye, R. (1994), "Piezothermoelasticity and precision control of piezoelectric systems: Theory and finite element analysis", ASME J. Vib. Acoust., 116, 489-495. https://doi.org/10.1115/1.2930454
- Tzou, H.S. and Ye, R. (1996), "Pyroelectric and thermal strain effects of piezoelectric (PVDF and PZT) devices", Mech. Syst. Signal Pr, 10(4), 459-469. https://doi.org/10.1006/mssp.1996.0032
- Varadan, V.V., Lim, Y.H. and Varadan, V.K. (1996), "Closed loop finite-element modeling of active/passive damping in structural vibration control", Smart Mater. Struct., 5(5), 685-694. https://doi.org/10.1088/0964-1726/5/5/016
- Vautier, B.J.G. and Moheimani, S.O.R. (2005), "Charge driven piezoelectric actuators for structural vibration control: issues and implementation", Smart Mater. Struct., 14(4), 575-586. https://doi.org/10.1088/0964-1726/14/4/016
- Wang, D., Fotinich, Y. and Carman, G.P. (1998), "Influence of temperature on the electromechanical and fatigue behavior of piezoelectric ceramics", J. Appl. Phys., 83(10), 5342-5350. https://doi.org/10.1063/1.367362
- Wang, S.Y., Quek, S.T. and Ang, T.T. (2001), "Vibration control of smart piezoelectric composite plates", Smart Mater. Struct., 10(4), 637-644. https://doi.org/10.1088/0964-1726/10/4/306
- Wang, D.A. and Huang, Y.M. (2002), "Robust vibration control of a beam using the H based controller with model error compensator", J. Sound. Vib., 254, 877-895. https://doi.org/10.1006/jsvi.2001.4133
- Wang, F., Tang, G.J. and Li, D.K. (2007), "Accurate modeling of a piezoelectric composite beam", Smart Mater. Struct., 16(5), 1595-1602. https://doi.org/10.1088/0964-1726/16/5/013
- William, Saunders R., Cole, D.G. and Robertshaw, H.H. (1994), "Experiments in piezostructure modal analysis for MIMO feedback control", Smart Mater. Struct., 3(2), 210-218. https://doi.org/10.1088/0964-1726/3/2/017
- Yang, S.M. and Chiu, J.S. (1994), "Dither motor design with concurrent sensing and actuating piezoelectric materials", Smart Mater. Struct., 3(2), 248-53. https://doi.org/10.1088/0964-1726/3/2/022
- Yang, S.M. and Lee, Y.J. (1994a), "Modal analysis of stepped beams with piezoelectric materials", J. Sound. Vib., 176(3), 289-300. https://doi.org/10.1006/jsvi.1994.1377
- Yang, S.M. and Lee Y.J. (1994b), "Interaction of structure vibration and piezoelectric actuation", Smart Mater. Struct., 3(4), 494-500. https://doi.org/10.1088/0964-1726/3/4/012
- Yang, S.M. and Jeng C.A. (1996), "Structural vibration suppression by concurrent piezoelectric sensor and actuator", Smart Mater. Struct.,5(6), 806-813. https://doi.org/10.1088/0964-1726/5/6/011
- Yang, S.M. and Bian, J.J. (1996), "Vibration suppression experiments on composite laminated plates using an embedded piezoelectric sensor and actuator", Smart Mater. Struct, 5(4), 501-507. https://doi.org/10.1088/0964-1726/5/4/014
- Yang, J. and Xiang, H.J. (2007), "Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators", Smart Mater. Struct., 16(3), 784-797. https://doi.org/10.1088/0964-1726/16/3/028
- Yu, W. and Hodges, D.H. (2004), "A simple thermopiezoelastic model for smart composite plates with accurate stress recovery", Smart Mater. Struct., 13(4), 926-938. https://doi.org/10.1088/0964-1726/13/4/031
- Zhabihollah, A., Sedagahti, R. and Ganesan, R. (2007), "Active vibration suppression of smart laminated beams using layerwise theory and an optimal control strategy", Smart Mater. Struct., 16(6), 2190-2201. https://doi.org/10.1088/0964-1726/16/6/022
- Zhang, W., Qiu, J. and Tani, J. (2004), "Robust vibration control of a plate using self-sensing actuators of piezoelectric patches", J. Intell. Mater. Syst. Struct., 15(12), 923-931. https://doi.org/10.1177/1045389X04045153
- Zhang, X.D. and Sun, C.T. (1996), "Formulation of an adaptive sandwich beam", Smart Mater. Struct., 5(6), 814-23. https://doi.org/10.1088/0964-1726/5/6/012
- Zheng, S., Wang, S. and Chen, W. (2004), "The formulation of a refined hybrid enhanced assumed strain solid shell element and its application to model smart structures containing distributed piezoelectric sensors/actuators", Smart Mater. Struct, 13(4), 43-50. https://doi.org/10.1088/0964-1726/13/4/N02
Cited by
- Active vibration control of a smart plate using a piezoelectric sensor–actuator pair at elevated temperatures vol.20, pp.10, 2011, https://doi.org/10.1088/0964-1726/20/10/105023
- Active vibration control: considering effect of electric field on coefficients of PZT patches vol.16, pp.6, 2015, https://doi.org/10.12989/sss.2015.16.6.1091
- Active Flutter Control of a Supersonic Honeycomb Sandwich Beam Resting on Elastic Foundation with Piezoelectric Sensor/Actuator Pair vol.15, pp.03, 2015, https://doi.org/10.1142/S0219455414500527
- Optimal unimorph and bimorph configurations of piezocomposite actuators for bending and twisting vibration control of plate structures 2018, https://doi.org/10.1177/1045389X17742736
- Modeling of the Through-the-Thickness Electric Potentials of a Piezoelectric Bimorph Using the Spectral Element Method vol.14, pp.12, 2014, https://doi.org/10.3390/s140203477
- A Review of Prediction Methods for the Transient Vibration and Sound Radiation of Plates vol.32, pp.4, 2013, https://doi.org/10.1260/0263-0923.32.4.309
- Optimal control and design of composite laminated piezoelectric plates vol.15, pp.5, 2015, https://doi.org/10.12989/sss.2015.15.5.1177
- Nonlinear vibration control of a piezoelectric beam with a fuzzy logic controller vol.52, pp.1-2, 2016, https://doi.org/10.3233/JAE-162155
- A study on controller structure interaction of piezoelectric smart structures based on finite element method vol.25, pp.12, 2014, https://doi.org/10.1177/1045389X13507353
- Active structural vibration control: Robust to temperature variations vol.33, 2012, https://doi.org/10.1016/j.ymssp.2012.07.009
- Supersonic flutter suppression of electrorheological fluid-based adaptive panels resting on elastic foundations using sliding mode control vol.21, pp.4, 2012, https://doi.org/10.1088/0964-1726/21/4/045005
- Vibration attenuation of spacecraft in the presence of parametric and unmodeled dynamics uncertainties using collocated and noncollocated control: A comparative study 2017, https://doi.org/10.1177/1077546317700541
- Benchmark exact free vibration solutions for multilayered piezoelectric composite plates vol.182, 2017, https://doi.org/10.1016/j.compstruct.2017.09.035
- Vibration control of a lead zirconate titanate structure considering controller–structure interactions pp.2048-4046, 2018, https://doi.org/10.1177/1461348418795372
- Modeling of piezoelectric sensors adhesively bonded on trusses using a mathematical programming approach vol.58, pp.3, 2018, https://doi.org/10.1007/s00158-018-1933-3
- Active vibration control of a slewing spacecraft’s panel using H∞ control vol.18, pp.5, 2016, https://doi.org/10.21595/jve.2016.16887
- Robust vibration control of a flexible manipulator in presence of payload uncertainty vol.19, pp.5, 2011, https://doi.org/10.21595/jve.2017.18215
- SDRE controller considering Multi Observer applied to nonlinear IPMC model vol.20, pp.1, 2011, https://doi.org/10.12989/sss.2017.20.1.001
- 2D Free Vibration Solution of the Hybrid Piezoelectric Laminated Beams Using Extended Kantorovich Method vol.101, pp.1, 2011, https://doi.org/10.1007/s40032-019-00518-w
- Review on the use of piezoelectric materials for active vibration, noise, and flow control vol.29, pp.5, 2011, https://doi.org/10.1088/1361-665x/ab7541
- Controlling the Vibration Amplitude of a System with a Piezoelectric Element by Applying an Electric Voltage to it vol.1945, pp.1, 2021, https://doi.org/10.1088/1742-6596/1945/1/012045
- Sustainability of Civil Structures through the Application of Smart Materials: A Review vol.14, pp.17, 2011, https://doi.org/10.3390/ma14174824