DOI QR코드

DOI QR Code

Emergent damage pattern recognition using immune network theory

  • Chen, Bo (Department of Mechanical Engineering - Engineering Mechanics, Michigan Technological University) ;
  • Zang, Chuanzhi (Department of Mechanical Engineering - Engineering Mechanics, Michigan Technological University)
  • Received : 2010.04.15
  • Accepted : 2010.11.28
  • Published : 2011.07.25

Abstract

This paper presents an emergent pattern recognition approach based on the immune network theory and hierarchical clustering algorithms. The immune network allows its components to change and learn patterns by changing the strength of connections between individual components. The presented immune-network-based approach achieves emergent pattern recognition by dynamically generating an internal image for the input data patterns. The members (feature vectors for each data pattern) of the internal image are produced by an immune network model to form a network of antibody memory cells. To classify antibody memory cells to different data patterns, hierarchical clustering algorithms are used to create an antibody memory cell clustering. In addition, evaluation graphs and L method are used to determine the best number of clusters for the antibody memory cell clustering. The presented immune-network-based emergent pattern recognition (INEPR) algorithm can automatically generate an internal image mapping to the input data patterns without the need of specifying the number of patterns in advance. The INEPR algorithm has been tested using a benchmark civil structure. The test results show that the INEPR algorithm is able to recognize new structural damage patterns.

Keywords

Acknowledgement

Supported by : National Science Foundation

References

  1. Beck, J., Bernal, D., Caicedo, J., Dyke, S., Forsyth, M., Lord, J.F. and Mizumori, A. (2002), "Description of Experimental Data from Structural Health Monitoring of UBC Test Structure", file:///C:/users/Old/bchen_new/ visiting%20scholar/Chuanzhi/zcz/Matlab%20Shared%20data/ASCEExperimentData/readme.html.
  2. Castiglione, F., Motta, S. and Nicosia, G. (2001), "Pattern recognition by primary and secondary response of an Artificial Immune System", Theor. Biosci., 120(2), 93-106. https://doi.org/10.1007/s12064-001-0010-3
  3. Chang, P.C., Flatau, A. and Liu, S.C. (2003), "Review paper: health monitoring of civil infrastructure", Struct. Health Monit., 2(3), 257-267. https://doi.org/10.1177/1475921703036169
  4. Chen, B. and Zang, C. (2009), "Artificial immune pattern recognition for structure damage classification", Comput. Struct., 87(21-22), 1394-1407. https://doi.org/10.1016/j.compstruc.2009.08.012
  5. Chen, B. and Zang, C. (2011), "A hybrid immune model for unsupervised structural damage pattern recognition", Expert Syst. Appli., 38(3), 1650-1658. https://doi.org/10.1016/j.eswa.2010.07.087
  6. Cheong, M.Y. and Lee, H. (2008), "Determining the number of clusters in cluster analysis", J. Korean Statistic. Soc., 37(2), 135-143. https://doi.org/10.1016/j.jkss.2007.10.004
  7. Chiu, T., DongPing, F., Chen, J., Yao, W. and Jeris, C. (2001), "A robust and scalable clustering algorithm for mixed type attributes in large database environment", KDD-2001, Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 263-8|xv+483.
  8. Dasgupta, D., KrishnaKumar, K., Wong, D. and Berry, M. (2004), "Negative selection algorithm for aircraft fault detection", Artificial Immune Systems", Proceedings of the 3rd International Conference, ICARIS 2004, Lecture Notes in Comput. Sci., 3239, 1-13.
  9. De Castro, L.N. and Timmis, J. (2002), Artificial Immune Systems: A New Computational Intelligence Approach Springer.
  10. De Castro, L.N. and Von Zuben, F.J. (2001), aiNet: An Artificial Immune Network for Data Analysis. Data Mining: A Heuristic Approach. H.A. Abbass, R.A. Sarker and C.S. Newton, Idea Group Publishing: 231-259.
  11. Freitas, A.A. and Timmis, J. (2007), "Revisiting the foundations of artificial immune systems for data mining", IEEE T. Evolut. Comput., 11(4), 521-540. https://doi.org/10.1109/TEVC.2006.884042
  12. Hart, E. and Timmis, J. (2008), "Application areas of AIS: the past, the present and the future", Appl. Soft Comput., 8(1), 191-201. https://doi.org/10.1016/j.asoc.2006.12.004
  13. Jerne, N.K. (1974), "Towards a network theory of immune system", Ann. Immunol., C125(1-2), -373-389.
  14. Johnson, E.A., Lam, H.F., Katafygiotis, L.S. and Beck, J.L. (2000), "A benchmark problem for structural health monitoring and damage detection", Proceedings of the 14th Engineering Mechanics Conference, Austin, Texas.
  15. Kothari, R. and Pitts, D. (1999 ), "On finding the number of clusters", Pattern Recogn. Lett., 20(4), 405-416. https://doi.org/10.1016/S0167-8655(99)00008-2
  16. Lanaridis, A., Karakasis, V. and Stafylopatis, A. (2008), "Clonal selection-based neural classifier", Proceedings of the 8th International Conference on Hybrid Intelligent Systems (HIS), 655-60.
  17. Li, M.J., Ng, M.K., Cheung, Y.M. and Huang, J.Z. (2008), "Agglomerative fuzzy K-Means clustering algorithm with selection of number of clusters", IEEE T, Knowl. Data En., 20(11), 1519-1534. https://doi.org/10.1109/TKDE.2008.88
  18. Lu, K.C., Loh, C.H., Yang, Y.S., Lynch, J.P. and Law, K.H. (2008), "Real-time structural damage detection using wireless sensing and monitoring system", Smart Struct. Syst., 4(6), 759-77. https://doi.org/10.12989/sss.2008.4.6.759
  19. Nagayama, T., Sim, S.H., Miyamori, Y. and Spencer, B.F. (2007), "Issues in structural health monitoring employing smart sensors", Smart Struct. Syst., 3(3), 299-320. https://doi.org/10.12989/sss.2007.3.3.299
  20. Negoita, M. (2005), "Artificial immune systems - an emergent technology for autonomous intelligent systems and data mining", Autonomous Intelligent Systems: Agents and Data Mining, Proceedings of the International Workshop, AIS-ADM 2005, Lecture Notes in Artificial Intelligence, 3505, 19-36.
  21. Polat, K., Gunes, S. and Tosun, S. (2006), "Diagnosis of heart disease using artificial immune recognition system and fuzzy weighted pre-processing", Pattern Recogn., 39(11), 2186-2193. https://doi.org/10.1016/j.patcog.2006.05.028
  22. Qinpei, Z., Hautamaki, V. and Friinti, P. (2008), "Knee point detection in BIC for detecting the number of clusters", Advanced Concepts for Intelligent Vision Systems, Proceedings of the 10th International Conference, ACIVS 2008, 664-73.
  23. Salvador, S. and Chan, P. (2004), "Determining the number of clusters/segments in hierarchical clustering/ segmentation algorithms", Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence, Boca Raton, FL, USA, IEEE Comput. Soc.
  24. Shen, X., Gao, X.Z. and Bie, R. (2008), "Artificial immune networks: Models and applications", Int. J. Intell. Syst., 1(2), 168-176. https://doi.org/10.2991/ijcis.2008.1.2.7
  25. Sugar, C.A. and James, G.M. (2003), "Finding the number of clusters in a dataset: An information-theoretic approach", J. Am. Stat. Assoc., 98(463), 750-763. https://doi.org/10.1198/016214503000000666
  26. Sumitro, S. and Wang, M.L. (2005), "Sustainable structural health monitoring system", Struct. Health Monit., 12(3-4), 445-467. https://doi.org/10.1002/stc.79
  27. Theodoridis, S. and Koutroumbas, K. (2008), Pattern Recog., Academic Press.
  28. Tibshirani, R., Walther, G. and Hastie, T. (2001), "Estimating the number of clusters in a data set via the gap statistic", J. R. Stat. Soc. B., 63(2), 411-423. https://doi.org/10.1111/1467-9868.00293
  29. Timmis, J., Andrews, P., Owens, N. and Clark, E. (2008), "An interdisciplinary perspective on artificial immune systems", Evolution. Intell., 1(1), 5-26. https://doi.org/10.1007/s12065-007-0004-2
  30. Weng, J.H., Loh, C.H., Lynch, J.P., Lu, K.C., Lin, P.Y. and Wang, Y. (2008), "Output-only modal identification of a cable-stayed bridge using wireless monitoring systems", Eng. Struct. 30(7), 1820-1830. https://doi.org/10.1016/j.engstruct.2007.12.002
  31. Zhong, Y.F., Zhang, L.P., Huang, B. and Li, P.X. (2006), "An unsupervised artificial immune classifier for multi/ hyperspectral remote sensing imagery", IEEE T. Geosci. Remote., 44(2), 420-431. https://doi.org/10.1109/TGRS.2005.861548

Cited by

  1. A Bioinspired Methodology Based on an Artificial Immune System for Damage Detection in Structural Health Monitoring vol.2015, 2015, https://doi.org/10.1155/2015/648097