Acknowledgement
Supported by : National Science Foundation
References
- Beck, J., Bernal, D., Caicedo, J., Dyke, S., Forsyth, M., Lord, J.F. and Mizumori, A. (2002), "Description of Experimental Data from Structural Health Monitoring of UBC Test Structure", file:///C:/users/Old/bchen_new/ visiting%20scholar/Chuanzhi/zcz/Matlab%20Shared%20data/ASCEExperimentData/readme.html.
- Castiglione, F., Motta, S. and Nicosia, G. (2001), "Pattern recognition by primary and secondary response of an Artificial Immune System", Theor. Biosci., 120(2), 93-106. https://doi.org/10.1007/s12064-001-0010-3
- Chang, P.C., Flatau, A. and Liu, S.C. (2003), "Review paper: health monitoring of civil infrastructure", Struct. Health Monit., 2(3), 257-267. https://doi.org/10.1177/1475921703036169
- Chen, B. and Zang, C. (2009), "Artificial immune pattern recognition for structure damage classification", Comput. Struct., 87(21-22), 1394-1407. https://doi.org/10.1016/j.compstruc.2009.08.012
- Chen, B. and Zang, C. (2011), "A hybrid immune model for unsupervised structural damage pattern recognition", Expert Syst. Appli., 38(3), 1650-1658. https://doi.org/10.1016/j.eswa.2010.07.087
- Cheong, M.Y. and Lee, H. (2008), "Determining the number of clusters in cluster analysis", J. Korean Statistic. Soc., 37(2), 135-143. https://doi.org/10.1016/j.jkss.2007.10.004
- Chiu, T., DongPing, F., Chen, J., Yao, W. and Jeris, C. (2001), "A robust and scalable clustering algorithm for mixed type attributes in large database environment", KDD-2001, Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 263-8|xv+483.
- Dasgupta, D., KrishnaKumar, K., Wong, D. and Berry, M. (2004), "Negative selection algorithm for aircraft fault detection", Artificial Immune Systems", Proceedings of the 3rd International Conference, ICARIS 2004, Lecture Notes in Comput. Sci., 3239, 1-13.
- De Castro, L.N. and Timmis, J. (2002), Artificial Immune Systems: A New Computational Intelligence Approach Springer.
- De Castro, L.N. and Von Zuben, F.J. (2001), aiNet: An Artificial Immune Network for Data Analysis. Data Mining: A Heuristic Approach. H.A. Abbass, R.A. Sarker and C.S. Newton, Idea Group Publishing: 231-259.
- Freitas, A.A. and Timmis, J. (2007), "Revisiting the foundations of artificial immune systems for data mining", IEEE T. Evolut. Comput., 11(4), 521-540. https://doi.org/10.1109/TEVC.2006.884042
- Hart, E. and Timmis, J. (2008), "Application areas of AIS: the past, the present and the future", Appl. Soft Comput., 8(1), 191-201. https://doi.org/10.1016/j.asoc.2006.12.004
- Jerne, N.K. (1974), "Towards a network theory of immune system", Ann. Immunol., C125(1-2), -373-389.
- Johnson, E.A., Lam, H.F., Katafygiotis, L.S. and Beck, J.L. (2000), "A benchmark problem for structural health monitoring and damage detection", Proceedings of the 14th Engineering Mechanics Conference, Austin, Texas.
- Kothari, R. and Pitts, D. (1999 ), "On finding the number of clusters", Pattern Recogn. Lett., 20(4), 405-416. https://doi.org/10.1016/S0167-8655(99)00008-2
- Lanaridis, A., Karakasis, V. and Stafylopatis, A. (2008), "Clonal selection-based neural classifier", Proceedings of the 8th International Conference on Hybrid Intelligent Systems (HIS), 655-60.
- Li, M.J., Ng, M.K., Cheung, Y.M. and Huang, J.Z. (2008), "Agglomerative fuzzy K-Means clustering algorithm with selection of number of clusters", IEEE T, Knowl. Data En., 20(11), 1519-1534. https://doi.org/10.1109/TKDE.2008.88
- Lu, K.C., Loh, C.H., Yang, Y.S., Lynch, J.P. and Law, K.H. (2008), "Real-time structural damage detection using wireless sensing and monitoring system", Smart Struct. Syst., 4(6), 759-77. https://doi.org/10.12989/sss.2008.4.6.759
- Nagayama, T., Sim, S.H., Miyamori, Y. and Spencer, B.F. (2007), "Issues in structural health monitoring employing smart sensors", Smart Struct. Syst., 3(3), 299-320. https://doi.org/10.12989/sss.2007.3.3.299
- Negoita, M. (2005), "Artificial immune systems - an emergent technology for autonomous intelligent systems and data mining", Autonomous Intelligent Systems: Agents and Data Mining, Proceedings of the International Workshop, AIS-ADM 2005, Lecture Notes in Artificial Intelligence, 3505, 19-36.
- Polat, K., Gunes, S. and Tosun, S. (2006), "Diagnosis of heart disease using artificial immune recognition system and fuzzy weighted pre-processing", Pattern Recogn., 39(11), 2186-2193. https://doi.org/10.1016/j.patcog.2006.05.028
- Qinpei, Z., Hautamaki, V. and Friinti, P. (2008), "Knee point detection in BIC for detecting the number of clusters", Advanced Concepts for Intelligent Vision Systems, Proceedings of the 10th International Conference, ACIVS 2008, 664-73.
- Salvador, S. and Chan, P. (2004), "Determining the number of clusters/segments in hierarchical clustering/ segmentation algorithms", Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence, Boca Raton, FL, USA, IEEE Comput. Soc.
- Shen, X., Gao, X.Z. and Bie, R. (2008), "Artificial immune networks: Models and applications", Int. J. Intell. Syst., 1(2), 168-176. https://doi.org/10.2991/ijcis.2008.1.2.7
- Sugar, C.A. and James, G.M. (2003), "Finding the number of clusters in a dataset: An information-theoretic approach", J. Am. Stat. Assoc., 98(463), 750-763. https://doi.org/10.1198/016214503000000666
- Sumitro, S. and Wang, M.L. (2005), "Sustainable structural health monitoring system", Struct. Health Monit., 12(3-4), 445-467. https://doi.org/10.1002/stc.79
- Theodoridis, S. and Koutroumbas, K. (2008), Pattern Recog., Academic Press.
- Tibshirani, R., Walther, G. and Hastie, T. (2001), "Estimating the number of clusters in a data set via the gap statistic", J. R. Stat. Soc. B., 63(2), 411-423. https://doi.org/10.1111/1467-9868.00293
- Timmis, J., Andrews, P., Owens, N. and Clark, E. (2008), "An interdisciplinary perspective on artificial immune systems", Evolution. Intell., 1(1), 5-26. https://doi.org/10.1007/s12065-007-0004-2
- Weng, J.H., Loh, C.H., Lynch, J.P., Lu, K.C., Lin, P.Y. and Wang, Y. (2008), "Output-only modal identification of a cable-stayed bridge using wireless monitoring systems", Eng. Struct. 30(7), 1820-1830. https://doi.org/10.1016/j.engstruct.2007.12.002
- Zhong, Y.F., Zhang, L.P., Huang, B. and Li, P.X. (2006), "An unsupervised artificial immune classifier for multi/ hyperspectral remote sensing imagery", IEEE T. Geosci. Remote., 44(2), 420-431. https://doi.org/10.1109/TGRS.2005.861548
Cited by
- A Bioinspired Methodology Based on an Artificial Immune System for Damage Detection in Structural Health Monitoring vol.2015, 2015, https://doi.org/10.1155/2015/648097