References
- ASTM D2435 (2004), "Standard test method for one-dimensional consolidation properties of soils using incremental loading", Annual Book of ASTM Standard.
- Becker, D.E., Crooks, J.H.A., Been, K. and Jefferies, M.G. (1987), "Work as a criterion for determining in situ and yield stresses in clays", Can. Geotech. J., 24(4), 49-564.
- Burland, J.B. (1990), "On the compressibility and shear strength of natural clays", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329
- Burmister, D.M. (1951), "The applications of controlled test methods in consolidation testing", Proceedings of the Symposium on Consolidation Testing of Soils., Special Technical Publication.
- Butterfield, R. (1979), "A natural compression law for soils (an advance on e-logp')", Geotechnique, 29(4), 469-480. https://doi.org/10.1680/geot.1979.29.4.469
- Casagrande, A. (1936), "The determination of the pre-consolidation load and its practical significance", Proceedings of the 1st International Soil Mechanics and Foundation Engineering Conference, Cambridgd, Mass., Ed., Casagrande.
- Grozic, J.L.H., Lunne, T. and Pande, S. (2003), "An oedometer test study on the preconsolidation stress of glaciomarine clays", Can. Geotech. J., 40(5), 857-872. https://doi.org/10.1139/t03-043
- Houlsby, G.T. and Sharma, R.S. (1999), "A conceptual model for the yielding and consolidation of clays", Geotechnique, 49(4), 491-501. https://doi.org/10.1680/geot.1999.49.4.491
- Imai, G. (1979), "Development of new consolidation test procedure using seepage force", Soils Found., 19(3), 45-60. https://doi.org/10.3208/sandf1972.19.3_45
- Janbu, N. (1969), "The resistance concept applied to deformation of soils", Proceedings of the 7th International Soil Mechanics and Foundation Engineering Conference, Mexico City, A. A. Balkema, Rotterdam.
- Jose, B.T., Sridharan, A. and Abraham, B.M. (1989), "Log-log method for determination of preconsolidation pressure", Geotech. Testing J. ASTM, 12(3), 230-237. https://doi.org/10.1520/GTJ10974J
- Khan, P.A, Madhav, M.R. and Reddy, E.S. (2010), "Consolidation of thick clay layer by radial flow non-linear theory", Geomech. Eng., 2(2), 157-160. https://doi.org/10.12989/gae.2010.2.2.157
- Kwon, T.H. and Cho, G.C. (2005), "Smart geophysical characterization of particulate materials in a laboratory", Smart Struct. Syst., 1(2), 217-233. https://doi.org/10.12989/sss.2005.1.2.217
- Lee, C., Lee, J.S., Lee, W. and Cho, T.H. (2008), "Experiment setup for shear wave and electrical resistance measurements in an oedometer", Geotech. Test. J., 31(2), 149-156.
- Lee, J.S. and Santamarina, J.C., (2005), "Bender elements: performance and signal interpretation", J. Geotech. Geoenviron., 131(9), 1063-1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063)
- Lee, J.S., Fernandez, A.L. and Santamarina, J.C. (2005), "S-wave velocity tomography: small-scale laboratory application." Geotech. Test. J., 28(4), 336-344.
- Nagaraj, T.S. and Srinivasa Murthy, B.R. (1983), "Rationalization of Skempton's compressibility equation", Geotechnique, 33(4), 433-443. https://doi.org/10.1680/geot.1983.33.4.433
- Negussey, D. and Vaid, Y.P. (1995), "Estimating maximum past pressures in clay", Proceedings of the International Symposium on Compression and Consolidation of Clayey soils, Hiroshima.
- Onitsuka, K., Hong, Z., Hara, Y. and Yoshitake, S. (1995), "Interpretation of oedometer test data for natural clays", Soils Found., 35(3), 61-70. https://doi.org/10.3208/sandf.35.61
- Schmertmann, J.H. (1955), "The undisturbed consolidation behavior of clay", TAS Civil Engineers, 20, 1201-1233.
- Shang, J.Q., Tang, Q.H. and Xu, Y.Q. (2009), "Consolidation of marine clay using electrical vertical drains", Geomech. Eng. 1(4), 275-289. https://doi.org/10.12989/gae.2009.1.4.275
- Sridharan, A., Abraham, B.M. and Jose, B.T. (1991), "Improved technique for estimation of preconsolidation pressure", Geotechnique, 41(2), 263-268. https://doi.org/10.1680/geot.1991.41.2.263
- Wanatowski, D., Chu, J. and Gan, C.L. (2009), "Compressibility of Changi sand in K0 consolidation", Geomech. Eng., 1(3), 241-257. https://doi.org/10.12989/gae.2009.1.3.241
- Wang, L.B. and Frost, J.D. (2004), "Dissipated strain energy method for determining preconsolidation pressure", Can. Geotech. J., 41(4), 760-768. https://doi.org/10.1139/t04-013
- Zeng, X. (2006), "Applications of piezoelectric sensors in geotechnical engineering", Smart Struct. Syst., 2(3), 237-251. https://doi.org/10.12989/sss.2006.2.3.237
Cited by
- Theoretical relationship between elastic wave velocity and electrical resistivity vol.116, 2015, https://doi.org/10.1016/j.jappgeo.2015.02.025
- Application of shear wave velocity for evaluation of equivalent radius of penetrometers vol.86, 2012, https://doi.org/10.1016/j.jappgeo.2012.07.009
- Deformation of “tunable” clay–polymer composites vol.101, 2014, https://doi.org/10.1016/j.clay.2014.08.014
- Estimation of Consolidation in Soft Clay by Field Velocity Probe vol.23, pp.4, 2013, https://doi.org/10.9720/kseg.2013.4.511
- Characterization of Shear Waves in Busan New Port Clay: Estimation of the Coefficients of Shear Wave Velocity vol.23, pp.4, 2013, https://doi.org/10.9720/kseg.2013.4.503
- Evaluation of the freezing–thawing effect in sand–silt mixtures using elastic waves and electrical resistivity vol.113, 2015, https://doi.org/10.1016/j.coldregions.2015.02.004
- Correlations between Shear Wave Velocity and Geotechnical Parameters for Jiangsu Clays of China pp.1420-9136, 2018, https://doi.org/10.1007/s00024-018-2011-x
- Global semi-empirical relationships for correlating soil unit weight with shear wave velocity by void-ratio function vol.55, pp.8, 2018, https://doi.org/10.1139/cgj-2017-0226
- Use of the dilatometer test to estimate the maximum shear modulus of normally consolidated Busan clay pp.1521-0618, 2018, https://doi.org/10.1080/1064119X.2018.1458927
- Study of Activation Energy in Soil through Elastic Wave Velocity and Electrical Resistivity vol.16, pp.6, 2011, https://doi.org/10.2136/vzj2016.08.0073
- Settlement prediction for footings based on stress history from VS measurements vol.20, pp.5, 2020, https://doi.org/10.12989/gae.2020.20.5.371
- Relationship between Shear-Wave Velocity and Undrained Shear Strength of Peat vol.146, pp.7, 2011, https://doi.org/10.1061/(asce)gt.1943-5606.0002298
- Haar Wavelet Transform for Arrival Time Identification in Bender Element Tests vol.43, pp.4, 2020, https://doi.org/10.1520/gtj20180400
- Response of Transitional Mixtures Retaining Memory of In-Situ Overburden Pressure Monitored Using Electromagnetic and Piezo Crystal Sensors vol.21, pp.7, 2011, https://doi.org/10.3390/s21072570