References
- Badiger, M.V., Lele, A.K., Bhalerao, V.S., Varghese, S. and Mashelkar, R.A. (1998), "Molecular tailoring of thermo-reversible copolymer gels: some new mechanistic insights", Chem. Phys., 109, 1175-1184.
- Beebe, D.J., Moore, J.S., Bauer, J.M, Yu, Q., Liu, R.H., Devadoss, C. and Jo, B.H. (2000), "Functional hydrogel structures for autonomous flow control inside microfluidic channels", Nature, 404(6), 588-590. https://doi.org/10.1038/35007047
- Bühler, W.J., Wiley, R.C. and Gilfrich, J.V. (1963), "Effect of low-temperature phase changes on mechanical properties of alloys near composition tini", J. Appl. Phys., 34(5), 1475.
- Capadona, J.R., Shanmuganathan, K., Tyler, D.J., Rowan, S.J. and Weder, C. (2008), "Stimuliresponsive polymer nanocomposites inspired by the sea cucumber dermis", Science, 319, 1370-1373. https://doi.org/10.1126/science.1153307
- Cartier, S., Horbett, T.A. and Ratner, B.D. (1995), "Glucose-sensitive membrane coated porous filters for control of hydraulic permeability and insulin delivery from a pressurized reservoir", J. Membrane Sci., 106(1-2), 17-24. https://doi.org/10.1016/0376-7388(95)00073-L
- Chang, L.C. and Read, T.A. (1951), "Plastic deformation and diffusionless phase changes in metals-the goldcadmium beta-phase", Trans. AIME, 189(1), 47-52.
- Dong, L., Agarwal, K.A, Bebbe, D.J. and Jiang, H. (2006), "Adaptive liquid microlenses activated by stimuliresponsive hydrogels", Nature, 442(3), 551-554. https://doi.org/10.1038/nature05024
- Faravelli, L. and Marzi, A. (2010), "Coupling shape-memory alloy and embedded informatics toward a metallic self-healing material", Smart Struct. Syst., 6(9), 1041-1056. https://doi.org/10.12989/sss.2010.6.9.1041
- Feinberg, A.W., Feigel, A., Shevkoplyas, S.S., Sheehy, S., Whitesides, G.M. and Parker, K.K. (2007), "Muscular thin films for building actuators and powering devices", Science, 317, 1366-1370. https://doi.org/10.1126/science.1146885
- Frimpong, R.A., Fraser, S. and Hilt, J.Z. (2006), "Synthesis and temperature response analysis of magnetichydrogel nanocomposites", J. Biomed. Mater. Res. A, 10(1002), 1-6.
- Fuhrer, R. Athanassiou, E.K., Luechinger, N.A. and Stark, W.J. (2009), "Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with musclelike flexibility", Small, 5(3), 383-388. https://doi.org/10.1002/smll.200801091
- Gant, R.M., Hous, Y., Grunlan, M.A. and Cote, G.L. (2008), "Development of a self-cleaning sensor membrane for implantable biosensors", J. Biomed. Mater. Res. A, 90(3), 695-701.
- Haraguchi, K. and Takehisa, T. (2002), "Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties", Adv. Mater., 14(16), 1120-1124. https://doi.org/10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9
- Haraguchi, K., Takehisa, T. and Fan, S. (2002), "Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay", Macromolecules, 35(27), 10162-10171. https://doi.org/10.1021/ma021301r
- Hirai, T. (2007), "Electrically active non-ionic artificial muscle", J. Intel Mat. Syst. Str., 18(2), 117-122. https://doi.org/10.1177/1045389X06063344
- Holtz, J.H. and Asher, S.A. (1997), "Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials", Nature, 389(23), 829-832. https://doi.org/10.1038/39834
- Hu, Z., Zhang, X. and Li, Y. (1995), "Synthesis and application of modulated polymer gels", Science, 269, 524- 526.
- Irie, M., Yoshifumi, M. and Tusuyoshi, T. (1993), "Stimuli-responsive polymers - chemical-induced reversible phase-separation of an aqueous-solution of poly(N-isopropylacrylamide) with pendent crown-ether groups", Polymer, 34(21), 4531-4535. https://doi.org/10.1016/0032-3861(93)90160-C
- Jin, X. and Hsieh, Y.L. (2005), "pH-responsive swelling behaviour of poly(vinyl alcohol)/poly(acrylic acid) bicomponent fibrous hydrogel membranes", Polymer, 46(14), 5149-5160. https://doi.org/10.1016/j.polymer.2005.04.066
- Kakugo, A., Sugimoto, S., Gong, J.P. and Osada, Y. (2002), "Gel machines constructed from chemically crosslinked actins and myosins", Adv. Mater., 14(16), 1124-1126. https://doi.org/10.1002/1521-4095(20020816)14:16<1124::AID-ADMA1124>3.0.CO;2-M
- Kataoka, K., Miyazaki, H., Bunya, M., Okano, T. and Sakurai, Y. (1998), "Totally synthetic polymer gels responding to external glucose concentration: Their preparation and application to on-off regulation of insulin release", JACS, 120(48), 12694-12695. https://doi.org/10.1021/ja982975d
- Kurisawa, M. and Yui, N. (1998), "Dual-stimuli-responsive drug release from interpenetrating polymer networkstructured hydrogels of gelatin and dextran", J. Control Release, 54(2), 191-200. https://doi.org/10.1016/S0168-3659(97)00247-2
- Kwon, H.J., Shikinaka, K., Kakugo, A., Gong, J.P. and Osada, Y. (2007), "Gel biomachine based on muscle proteins", Polym. Bull., 58(1), 43-52. https://doi.org/10.1007/s00289-006-0613-4
- Lendlein, A. and Langer, R. (2002), "Biodegradable, elastic shape-memory polymers for potential biomedical applications", Science, 296(31), 1673-1676. https://doi.org/10.1126/science.1066102
- Lendlein, A., Jiang, H.Y., Junger, O. and Langer, R. (2005), "Light-induced shape-memory polymers", Nature, 434(7035), 879-882. https://doi.org/10.1038/nature03496
- Leong, T.G., Randall, C.L, Benson, B.R., Bassik, R., Stern, G.M. and Gracias, D.H. (2009), "Tetherless thermobiochemically actuated microgrippers", PNAS, 106(3), 703-708. https://doi.org/10.1073/pnas.0807698106
- Lim, H.L., Chuang, J.C., Tran, T., Aung, A., Arya, G. and Varghese, S. (2011), "Dynamic electromechanical hydrogel matrices for stem cell culture", Adv. Funct. Mater., 21(1), 55-63. https://doi.org/10.1002/adfm.201001519
- Madden, J.D., Vandesteeg, N.A., Anquetil, P.A., Madden, P.G.A., Takshi, A., Pytel, R.Z., Lafontaine, S.R., Wieringa, P.A. and Hunter, I.W. (2004), "Artificial muscle technology: physical principles and naval prospects", IEEE J. Oceanic Eng., 29(3), 706-728. https://doi.org/10.1109/JOE.2004.833135
- Miyata, T., Uragami, T. and Nakamae, K. (2002), "Biomolecule-sensitive hydrogels", Adv, Drug Deliver Rev., 54(1), 79-98. https://doi.org/10.1016/S0169-409X(01)00241-1
- Osada, Y., Okuzaki, H. and Hori, H. (1992), "A polymer gel with electrically driven motility", Nature, 355(16), 242-244. https://doi.org/10.1038/355242a0
- Osada, Y. and Matsuda, A. (1995), "Shape-memory in hydrogels", Nature, 376(6537), 219.
- Plunkett, K.N. and Moore, J.S. (2004) "Patterned dual pH-responsive core-shell hydrogels with controllable swelling kinetics and volumes", Langmuir, 20(16), 6535-6537. https://doi.org/10.1021/la049453y
- Popovic, Z.D., Sprague, R.A. and Connell, G.A.N. (1988), "Technique for monolithic fabrication of microlens arrays", Appl. Optis., 27(7), 1281-1284. https://doi.org/10.1364/AO.27.001281
- Rutten, W.L.C. (2002), "Selective Electrical Interfaces with the nervous system", Ann. Biomed. Eng., 4, 407- 452. https://doi.org/10.1146/annurev.bioeng.4.020702.153427
- Sakai, T. and Yoshida, R. (2004), "Self-oscillating nanogel particles", Langmuir, 20(4), 1036-1038. https://doi.org/10.1021/la035833s
- Sawahata, K., Hara, M., Yasunaga, H. and Osada, Y. (1990) "Electrically controlled drug delivery system using polyelectrolyte gels", J. Control. Release, 14(3), 253-262. https://doi.org/10.1016/0168-3659(90)90165-P
- Shen, A.Q., Hamlington, B.D., Knoblauch, M., Peters, W.S. and Pickard, W. F. (2006) "Forisome based biomimetic smart materials", Smart Struct. Syst., 2(3), 225-235. https://doi.org/10.12989/sss.2006.2.3.225
- Shin, M.K, Spinks, G.M, Shin, S.R., Kim, S.I. and Kim, S.J. (2009), "Nanocomposite hydrogel with high toughness for bioactuators", Adv. Mater., 21(17), 1712-1715. https://doi.org/10.1002/adma.200802205
- Song, G., Ma, N., Li, L., Penney, N., Barr, T., Lee, H.J. and Arnold, S. (2011), "Design and control of a proofofconcept active jet engine intake using shape memory alloy actuators", Smart Struct. Syst., 7(1), 1-13. https://doi.org/10.12989/sss.2011.7.1.001
- Tanaka, T. (1978), "Collapse of gels and the critical endpoint", Phys. Rev. Lett., 40, 820-823. https://doi.org/10.1103/PhysRevLett.40.820
- Toates, F.M. (1972), "Accommodation function of human eye", Physiol. Rev., 52, 828-863. https://doi.org/10.1152/physrev.1972.52.4.828
- Tong, X., Zheng, J., Lu, Y., Zhang, Z. and Cheng, H. (2007), "Swelling and mechanical behaviors of carbon nanotube/poly(vinyl alcohol) hybrid hydrogels", Mater. Lett., 61(8-9), 1704-1706. https://doi.org/10.1016/j.matlet.2006.07.115
- Vakkalanka, S.K., Brazel, C.S. and Peppas, N.A. (1996) "Temperature-and pH-sensitive terpolymers for modulated delivery of streptokinase", J. Biomat. Sci - Polym. E., 8(2), 119-129.
- Varghese, S., Lele, A.K., Srinivas, D., Sastry, M. and Mashelkar, R.A., (2001), "Novel macroscopic selforganization in polymer gels", Adv. Mater., 13(20), 1544-1548. https://doi.org/10.1002/1521-4095(200110)13:20<1544::AID-ADMA1544>3.0.CO;2-F
- Weissman, J.M., Sunkara, H.B., Tse, A.S. and Asher, S.A. (1996), "Thermally switchable periodicities and diffraction from mesoscopically ordered materials", Science, 274(5289), 959-960. https://doi.org/10.1126/science.274.5289.959
- Wu, J., Su, Z.G. and Ma, G.H. (2006), "A thermo-and pH-sensitive hydrogel composed of quaternized chitosan / glycerophosphate", Int. J. Pharm., 315(1-2), 1-11. https://doi.org/10.1016/j.ijpharm.2006.01.045
- Xulu, P.M., Filipcsei, G. and Zrinyi, M. (2000), "Preparation and responsive properties of magnetically soft poly(N-isopropylacrylamide) gels", Macromolecules, 33(5), 1716-1719. https://doi.org/10.1021/ma990967r
- Yang, R., Wang, W.J. and Soper, S.A., (2005), "Out-of-plane microlens array fabricated using ultraviolet lithography", Appl. Phys. Lett., 86, 16110.
- Yin, X., Hoffman, A.S. and Stayton, P.S. (2006), "Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH", Biomacromolecules, 7(5), 1381-1385. https://doi.org/10.1021/bm0507812
- Yoshida, R. (2005), "Design of functional polymer gels and their application to biomimetic materials", Curr. Org. Chem., 9(16), 1617-1641. https://doi.org/10.2174/138527205774610949
Cited by
- Superparamagnetic Nanocomposites Based on the Dispersion of Oleic Acid-Stabilized Magnetite Nanoparticles in a Diglycidylether of Bisphenol A-Based Epoxy Matrix: Magnetic Hyperthermia and Shape Memory vol.116, pp.24, 2012, https://doi.org/10.1021/jp3026754
- Shape Memory Silk Protein Sponges for Minimally Invasive Tissue Regeneration vol.6, pp.2, 2017, https://doi.org/10.1002/adhm.201600762
- Variable stiffness biological and bio-inspired materials vol.24, pp.5, 2013, https://doi.org/10.1177/1045389X12461722
- The role of mechanics in biological and bio-inspired systems vol.6, pp.1, 2015, https://doi.org/10.1038/ncomms8418
- Hydrogels: a versatile tool with a myriad of biomedical and research applications for the skin vol.7, pp.4, 2012, https://doi.org/10.1586/edm.12.28
- Synergistic human-agent methods for deriving effective search strategies: the case of nanoscale design vol.26, pp.2, 2015, https://doi.org/10.1007/s00163-015-0190-3
- Improving human understanding and design of complex multi-level systems with animation and parametric relationship supports vol.1, 2015, https://doi.org/10.1017/dsj.2015.3
- A review of stimuli-responsive shape memory polymer composites vol.54, pp.9, 2013, https://doi.org/10.1016/j.polymer.2013.02.023
- Design of Complex Biologically Based Nanoscale Systems Using Multi-Agent Simulations and Structure–Behavior–Function Representations vol.135, pp.6, 2013, https://doi.org/10.1115/1.4024227
- Methodology: Bridging Science and Design for Bio-Based Product Development vol.138, pp.8, 2016, https://doi.org/10.1115/1.4033751