참고문헌
- Abbott, L.F. (2006), "Where are the switches on this thing", Problems in Systems Neuroscience, (Eds. J.L. van Hemmen and T.J. Sejnowski), Oxford University Press, 423-431.
- Bateson, P.J. (2004), "The active role of behaviour in evolution", Biol. Philos., 19, 283-298. https://doi.org/10.1023/B:BIPH.0000024468.12161.83
- Berkowitz, A. (2008), "Physiology and morphology of shared and specialized spinal interneurons for locomotion and scratching", J. Neurophysiol., 99(6), 2887-901. https://doi.org/10.1152/jn.90235.2008
- Berniker, M., Jarc, A., Bizzi, E. and Tresch, M.C. (2009), "Simplified and effective motor control based on muscle synergies to exploit musculoskeletal dynamics", Proc. Natl. Acad. Sci. USA., 106(18), 7601-7606. https://doi.org/10.1073/pnas.0901512106
- Bernstein, N. (1967), The co-ordination and regulation of movements, Pergamon Press, Oxford.
- Bizzi, E., Mussa-Ivaldi, F.A. and Giszter, S.F. (1991), "Computations underlying the execution of movement: a biological perspective", Science, 253(5017), 287-291. https://doi.org/10.1126/science.1857964
- Bradley, N.S., Solanki, D. and Zhao, D. (2005), "Limb movements during embryonic development in the chick: evidence for a continuum in limb motor control antecedent to locomotion", J. Neurophysiol., 94(6), 4401-11. https://doi.org/10.1152/jn.00804.2005
- Bradley, N.S., Ryu, Y.U. and Lin, J. (2008), "Fast locomotor burst generation in late stage embryonic motility", J. Neurophysiol., 99(4), 1733-42. https://doi.org/10.1152/jn.01393.2007
- Bradley, N.S. (2003), "Connecting the dots between animal and human studies of locomotion. Focus on Infants adapt their stepping to repeated trip-inducing stimuli", J. Neurophysiol., 90(4), 2088-2089. https://doi.org/10.1152/jn.00619.2003
- Brookfield, J.F.Y. (2009), "Evolution and evolvability: celebrating Darwin 200", Biol. Lett., 5, 44-46. https://doi.org/10.1098/rsbl.2008.0639
- Brown, G.D., Yamada, S. and Sejnowski, T.J. (2001), "Independent components analysis (ICA) at the neural cocktail party", Trends Neurosci., 24, 54-63. https://doi.org/10.1016/S0166-2236(00)01683-0
- Burdet, E. and Milner, T.E. (1998), "Quantization of human motions and learning of accurate movements", Biol. Cybern., 78, 307-318. https://doi.org/10.1007/s004220050435
- Calabretta, R., Ferdinando, A.D., Wagner, G.P. and Parisi, D. (2003), "What does it take to evolve behaviorally complex organisms?", Biosystems., 69(2-3), 245-62. https://doi.org/10.1016/S0303-2647(02)00140-5
- Calabretta, R., Nolfi, S., Parisi, D. and Wagner, G.P. (2000), "Duplication of modules facilitates the evolution of functional specialization", Artif. Life., 6(1), 69-84. https://doi.org/10.1162/106454600568320
- Callebaut, W. and Rasskin-Gutman, D. (2005), Modularity: Understanding the Development and Evolution of Natural Complex Systems., MIT Press.
- Cappellini, G., Ivanenko, Y.P., Poppele, R.E. and Lacquaniti, F. (2006), "Motor patterns in human walking and running", J. Neurophysiol., 95(6), 3426-3437. https://doi.org/10.1152/jn.00081.2006
- Chabra, M. and Jacobs, R.A. (2006), "Properties of synergies arising from a theory of optimal motor behavior", Neural Comput.,18, 2320-2342. https://doi.org/10.1162/neco.2006.18.10.2320
- Cheung, V.C., Piron, L., Agostini, M., Silvoni, S., Turolla, A. and Bizzi, E. (2009), "Stability of muscle synergies for voluntary actions after cortical stroke in humans", Proc. Natl. Acad. Sci. USA., 106(46), 19563-19568. https://doi.org/10.1073/pnas.0910114106
- Clarac, F., Brocard, F. and Vinay, L. (2004), "The maturation of locomotor networks", Prog. Brain. Res., 143, 57-66. https://doi.org/10.1016/S0079-6123(03)43006-9
- Clewley, R.H., Guckenheimer, J.M. and Valero-Cuevas, F.J. (2008), "Estimating effective degrees of freedom in motor systems", IEEE T. Bio-med. Eng., 55(2), 430-442. https://doi.org/10.1109/TBME.2007.903712
- Colgate, J.E. and Hogan, N. (1988), "Robust control of dynamically interacting systems", Int. J. Control, 48(1), 65-88. https://doi.org/10.1080/00207178808906161
- Collins, J.J. (1995), "The redundant nature of locomotor optimization laws", J. Biomech., 28, 251-267. https://doi.org/10.1016/0021-9290(94)00072-C
- Conditt, M.A. and Mussa-Ivaldi, F.A. (1999), "Central representation of time during motor learning", Proc. Natl. Acad. Sci. U.S.A., 96(20), 11625-11630. https://doi.org/10.1073/pnas.96.20.11625
- Dasen, J.S., Liu, J.P. and Jessell, T.M. (2003), "Motor neuron columnar fate imposed by sequential phases of Hox-c activity", Nature, 425, 926-933. https://doi.org/10.1038/nature02051
- d'Avella, A. and Bizzi, E. (2005), "Shared and specific muscle synergies in natural motor behaviors", Proc. Natl. Acad. Sci. U.S.A., 102(8), 3076-3081. https://doi.org/10.1073/pnas.0500199102
- d'Avella, A., Fernandez, L., Portone, A. and Lacquaniti, F. (2008), "Modulation of phasic and tonic muscle synergies with reaching direction and speed", J. Neurophysiol., 100(3), 1433-1454. https://doi.org/10.1152/jn.01377.2007
- Dominici, N., Ivanenko, Y.P. and Lacquaniti, F. (2007), "Control of foot trajectory in walking toddlers: adaptation to load changes", J. Neurophysiol., 97(4), 2790-2801. https://doi.org/10.1152/jn.00262.2006
- Flash, T. and Hochner, B. (2005), "Motor primitives in vertebrates and invertebrates", Curr. Opin. Neurobiol., 15(6), 660-666. https://doi.org/10.1016/j.conb.2005.10.011
- Flash, T. and Hogan, N. (1985), "The coordination of arm movements: an experimentally confirmed mathematical model", J. Neurosci., 5(7), 1688-703.
- Giszter, S.F. (2008), "Motor Primitives", Encyclopedia of Neuroscience,(Ed. Squire, L.R.), Academic Press, Oxford.
- Giszter, S.F., Mussa-Ivaldi, F.A. and Bizzi, E. (1993), "Convergent force fields organized in the frog spinal cord", J. Neurosci., 13, 467-491.
- Giszter, S.F. and Kargo, W.J. (2000), "Conserved temporal dynamics and vector superposition of primitives in frog wiping reflexes during spontaneous extensor deletions", Neurocomputing, 32-33, 775-783. https://doi.org/10.1016/S0925-2312(00)00243-5
- Giszter, S.F. and Kargo, W.J. (2001), "Modeling of dynamic controls in the frog wiping reflex: force-field level controls", Neurocomputing, 38-40, 1239-1247. https://doi.org/10.1016/S0925-2312(01)00467-2
- Giszter, S.F., Moxon, K.A., Rybak, I. and Chapin, J.K. (2000), "A neurobiological perspective on design of humanoid robots and their components", IEEE Intell. Syst., 15(4), 64-69. https://doi.org/10.1109/5254.867914
- Giszter, S.F., Moxon, K.A., Rybak, I. and Chapin, J.K. (2001), "Neurobiological and neurorobotic approaches to design of a controller for a humanoid motor system", Robot. Auton. Syst., 37, 219-235. https://doi.org/10.1016/S0921-8890(01)00159-2
- Giszter, S.F., Patil, V. and Hart, C.B. (2007b), "Primitives, premotor drives, and pattern generation: a combined computational and neuroethological perspective", Prog. Brain. Res., 165, 323-346. https://doi.org/10.1016/S0079-6123(06)65020-6
- Giszter, S.F., Hart, C.B. and Silfies, S. (2010), "Spinal cord modularity: evolution, development, and optimization and the possible relevance to low back pain in man", Exp. Brain. Res., 200(3-4), 283-306. https://doi.org/10.1007/s00221-009-2016-x
- Gorassini, M.A., Prochazka, A., Hiebert, G.W. and Gauthier, M.J. (1994), "Corrective responses to loss of ground support during walking. I. Intact cats", J. Neurophysiol., 71(2), 603-610. https://doi.org/10.1152/jn.1994.71.2.603
- Gottlieb, G.L. (1998), "Muscle activation patterns during two types of voluntary single-joint movement", J. Neurophysiol., 80, 1860-1867. https://doi.org/10.1152/jn.1998.80.4.1860
- Grillner, S., Perret, C. and Zangger, P. (1976), "Central generation of locomotion in the spinal dogfish", Brain Res. 109(2), 255-269. https://doi.org/10.1016/0006-8993(76)90529-1
- Hart, C.B. and Giszter, S.F. (2004), "Modular premotor drives and unit bursts as primitives for frog motor behaviors", J. Neurosci, 24(22), 5269-82. https://doi.org/10.1523/JNEUROSCI.5626-03.2004
- Hart, C.B. and Giszter, S.F. (2010), "A neural basis for motor primitives in the spinal cord", J. Neurosci, 30(4), 1322-1336. https://doi.org/10.1523/JNEUROSCI.5894-08.2010
- Hogan, N. (1984), "An organizing principle for a class of voluntary movements", J. Neurosci, 4(11), 2745-2754.
- Hogan, N. (1985), "The mechanics of multi-joint posture and movement control", Biol. Cybern., 52(5), 315-331. https://doi.org/10.1007/BF00355754
- Hogan, N. and Sternad, D. (2007), "On rhythmic and discrete movements: reflections, definitions and implications for motor control", Exp. Brain Res., 181(1), 13-30. https://doi.org/10.1007/s00221-007-0899-y
- Huang, X. and Xie, Y.M. (2010), "Evolutionary topology optimization of geometrically and materially nonlinear structures under prescribed design load", Struct. Eng. Mech.,. 34(5), 581-595. https://doi.org/10.12989/sem.2010.34.5.581
- Ijspeert, A., Nakanishi, J. and Schaal, S. (2003), "Learning attractor landscapes for learning motor primitives", (Eds. Becker, S., Thrun, S., Obermayer, K.), Advances in Neural Information Processing Systems 15, MIT Press, Cambridge, MA.
- Ivanenko, Y.P., Dominici, N., Cappellini, G. and Lacquaniti, F. (2005), "Kinematics in newly walking toddlers does not depend upon postural stability", J. Neurophysiol., 94(1), 754-763. https://doi.org/10.1152/jn.00088.2005
- Kargo, W.J. and Giszter, S.F. (2000), "Rapid corrections of aimed movements by combination of force-field primitives", J. Neurosci., 20, 409-426.
- Kargo, W.J. and Giszter, S.F. (2008), "Individual premotor drive pulses, not time-varying synergies, are the units of adjustment for limb trajectories constructed in spinal-cord", J. Neurosci., 28(10), 2409-2425. https://doi.org/10.1523/JNEUROSCI.3229-07.2008
- Kargo, W.J., Ramakrishnan, A., Hart, C.B., Rome, L. and Giszter, S.F. (2009), "A simple experimentally-based model using proprioceptive regulation of motor primitives captures adjusted trajectory formation in spinal frogs", J. Neurophysiol., 103(1), 573-590.
- Kargo, W.J. and Rome, L. (2002), "Functional morphology of proximal hindlimb muscles in the frog rana Pipiens", J. Exp. Biol., 205(14), 1987-2004.
- Karniel, A. and Mussa-Ivaldi, F.A. (2003), "Sequence, time, or state representation: how does the motor control system adapt to variable environments?", Biol. Cybern., 89(1), 10-21.
- Kelso, J.A., Holt, K.G., Rubin, P. and Kugler, P.N. (1981), "Patterns of human interlimb coordination emerge from the properties of non-linear, limit cycle oscillatory processes: theory and data", J. Mot. Behav., 13(4), 226-261. https://doi.org/10.1080/00222895.1981.10735251
- Kiehn, O., Hounsgard, J. and Sillar, K.T. (1997), "Basic building blocks of vertebrate CPGs", (Eds. Stein, P.S.G., Grillner, S, Selverston, A.I and Stuart, D.G), Neurons, Networks and Motor Behavior, MIT press, Cambridge, MA, 47-60.
- Koditschek, D.E., Full, R.J. and Buehler, M. (2004), "Mechanical aspects of legged locomotion control", Arthropod Struct. Dev., 33(3), 251-272. https://doi.org/10.1016/j.asd.2004.06.003
- Krishnamoorty, C.S. (2001), "Structural optimization in practice: Potential applications of genetic algorithms", Struct. Eng. Mech., 11(2), 151-170 https://doi.org/10.12989/sem.2001.11.2.151
- Krouchev, N., Kalaska, J.F. and Drew, T. (2006), "Sequential activation of muscle synergies during locomotion in the intact cat as revealed by cluster analysis and direct decomposition", J. Neurophysiol., 96(4), 1991-2010. https://doi.org/10.1152/jn.00241.2006
- Kuo, A.D. (2002), "The relative roles of feedforward and feedback in the control of rhythmic movements", Motor Control., 6(2), 129-145. https://doi.org/10.1123/mcj.6.2.129
- Kutch, J.J., Kuo, A.D., Bloch, A.M. and Rymer, W.Z. (2008), "Endpoint force fluctuations reveal flexible rather than synergistic patterns of muscle cooperation", J. Neurophysiol., 100(5), 2455-2471. https://doi.org/10.1152/jn.90274.2008
- Lafreniere-Roula, M. and McCrea, D.A. (2005), "Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator", J. Neurophysiol., 94(2), 1120-1132. https://doi.org/10.1152/jn.00216.2005
- Lemay, M.A. and Grill, W.M. (2004), "Modularity of motor output evoked by intraspinal microstimulation in cats", J. Neurophysiol., 91(1), 502-514. https://doi.org/10.1152/jn.00235.2003
- Liu, D. and Todorov, E. (2007), "Evidence for the flexible sensorimotor strategies predicted by optimal feedback control", J. Neurosci., 27(35), 9354-9368. https://doi.org/10.1523/JNEUROSCI.1110-06.2007
- Lockhart, D.B. and Ting, L.H. (2007), "Optimal sensorimotor transformations for balance", Nat. Neurosci., 10(10): 1329-1336. https://doi.org/10.1038/nn1986
- Loeb, G.E. (1999), "Asymmetry of hindlimb muscle activity and cutaneous reflexes after tendon transfers in kittens", J. Neurophysiol., 82(6), 3392-3394. https://doi.org/10.1152/jn.1999.82.6.3392
- Loeb, G.E. (2000), "Overcomplete musculature or underspecified tasks?" Mot. Control, 4, 81-83. https://doi.org/10.1123/mcj.4.1.81
- Loeb, G.E., Brown, I.E. and Cheng, E.J. (1999), "A hierarchical foundation for models of sensorimotor control", Exp. Brain Res., 126(1), 1-18. https://doi.org/10.1007/s002210050712
- Loeb, G.E., He, J. and Levine, W.S. (1989), "Spinal cord circuits: are they mirrors of musculoskeletal mechanics?", J. Mot. Behav., 21(4), 473-491. https://doi.org/10.1080/00222895.1989.10735495
- Loeb, G.E., Levine, W.S. and He, J. (1990), "Understanding sensorimotor feedback through optimal control", Cold Spring Harb Symp Quant Biol. 55, 791-803. https://doi.org/10.1101/SQB.1990.055.01.074
- Marder, E. and Bucher, D. (2001), "Central pattern generators and the control of rhythmic Movements", Curr. Biology, 11, 986-996. https://doi.org/10.1016/S0960-9822(01)00581-4
- Martin, J.H., Cooper, S.E. and Ghez, C. (1995), "Kinematic analysis of reaching in the cat", Exp. Brain Res. 102(3), 379-392.
- McCrea, D.A. and Rybak, I.A. (2007), "Modeling the mammalian locomotor CPG: insights from mistakes and perturbations", Prog. Brain Res., 165, 235-253. https://doi.org/10.1016/S0079-6123(06)65015-2
- Mirone, G. (2009), "Ni-Ti actuators and genetically optimized compliant ribs for an adaptive wing", Smart Struct. Syst., 5(6), 645-662. https://doi.org/10.12989/sss.2009.5.6.645
- Muceli, S., Boye, A.T., d'Avella, A. and Farina, D. (2010), "Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane", J Neurophysiol., 103(3), 1532-1542. https://doi.org/10.1152/jn.00559.2009
- Mussa-Ivaldi, F.A. (1992), "From basis functions to basis fields: Using vector primitives to capture vector patterns", Biol. Cybern., 67, 479-489. https://doi.org/10.1007/BF00198755
- Mussa-Ivaldi, F.A. and Giszter, S.F. (1992), "Vector field approximation: a computational paradigm for motor control and learning", Biol. Cybern., 67, 491-500. https://doi.org/10.1007/BF00198756
- Mussa-Ivaldi, F.A. and Hogan, N. (1991), "Integrable solutions of kinematic redundancy via impedance control", Int. J. Robot. Res.,10, 481-491. https://doi.org/10.1177/027836499101000504
- Mussa-Ivaldi, F.A. and Bizzi, E. (2000), "Motor learning through the combination of primitives", Philos. T. R. Soc. B., 355(1404), 1755-1769. https://doi.org/10.1098/rstb.2000.0733
- Mussa-Ivaldi, F.A., Giszter, S.F. and Bizzi, E. (1994), "Linear combination of primitives in vertebrate motor control", Proc. Nat. Acad. Sci., USA., 91, 7534-7538. https://doi.org/10.1073/pnas.91.16.7534
- Nishikawa, K.C., Anderson, C.W., Deban, S.M. and O'Reilly, J.C. (1992), "The evolution of neural circuits controlling feeding behavior in frogs", Brain Behav. Evol., 40(2-3), 125-140. https://doi.org/10.1159/000113908
- Pai, D.K. (2010), "Muscle mass in musculoskeletal models", J. Biomech., 43(11), 2093-2098. https://doi.org/10.1016/j.jbiomech.2010.04.004
- Pang, M.Y., Lam, T. and Yang, J.F. (2003), "Infants adapt their stepping to repeated trip-inducing stimuli", J. Neurophysiol., 90(4), 2731-2740. https://doi.org/10.1152/jn.00407.2003
- Polyakov, F., Stark, E., Drori, R., Abeles, M. and Flash, T. (2009), "Parabolic movement primitives and cortical states: merging optimality with geometric invariance", Biol. Cybern., 100(2), 159-184. https://doi.org/10.1007/s00422-008-0287-0
- Prinz, A.A. (2006), "Insights from models of rhythmic motor systems", Curr. Opin. Neurobiol., 16(6): 615-620. https://doi.org/10.1016/j.conb.2006.10.001
- Quevedo, J., Stecina, K., Gosgnach, S. and McCrea, D.A. (2005), "Stumbling corrective reaction during fictive locomotion in the cat", J. Neurophysiol., 94(3), 2045-2052. https://doi.org/10.1152/jn.00175.2005
- Raibert, M.H. (1986), Legged Robots that Balance., MIT Press.
- Rajasekaran, S. (2010), "Optimal laminate sequence of thin-walled composite beams of generic section using evolution strategies", Struct. Eng. Mech., 34(5), 597-609. https://doi.org/10.12989/sem.2010.34.5.597
- Richardson, A., Tresch, M.C., Bizzi, E. and Slotine, J.J. (2005), "Stability analysis of nonlinear muscle dynamics using contraction theory", Conf. Proc. IEEE Eng. Med. Biol. Soc. 5, 4986-4989.
- Richardson, A.G., Slotine, J.J., Bizzi, E. and Tresch, M.C. (2005), "Intrinsic musculoskeletal properties stabilize wiping movements in the spinalized frog", J. Neurosci., 25(12), 3181-3191. https://doi.org/10.1523/JNEUROSCI.4945-04.2005
- Rohrer, B., Fasoli, S., Krebs, H.I., Hughes, R., Volpe, B., Frontera, W.R., Stein, J. and Hogan, N. (2002), "Smoothness during stroke recovery", J. Neurosci., 22(18), 8297-8304.
- Sanger, T.D. (2000), "Human arm movements described by a low-dimensional superposition of principal components", J. Neurosci., 20(3), 1066-1072.
- Sanger, T.D. (1994), "Optimal unsupervised motor learning for dimensionality reduction of nonlinear control systems", IEEE T. Neural Networ., 5(6), 965-973. https://doi.org/10.1109/72.329694
- Schaal, S., Ijspeert, A. and Billard, A. (2003), "Computational approaches to motor learning by imitation", Philos. T. R. Soc. B., 358(1431), 537-547. https://doi.org/10.1098/rstb.2002.1258
- Schaal, S. and Schweighofer, N. (2005), "Computational motor control in humans and robots", Curr. Opin. Neurobiol., 15(6), 675-682. https://doi.org/10.1016/j.conb.2005.10.009
- Schouenborg, J. (2004), "Learning in sensorimotor circuits", Curr. Opin. Neurobiol., 14(6), 693-697. https://doi.org/10.1016/j.conb.2004.10.009
- Sherrington, C.S. (1961), The integrative action of the nervous system, Yale University Press, New Haven, CT.
- Slotine, J.J. and Lohmiller, W. (2001), "Modularity, evolution, and the binding problem: a view from stability theory", Neural Networ., 14(2), 137-145. https://doi.org/10.1016/S0893-6080(00)00089-7
- Sosnik, R., Hauptmann, B., Karni, A. and Flash, T. (2004), "When practice leads to co-articulation: the evolution of geometrically defined movement primitives", Exp. Brain Res., 156, 422-438. https://doi.org/10.1007/s00221-003-1799-4
- Tin, C. and Poon, C.S. (2005), "Internal models in sensorimotor integration: perspectives from adaptive control theory", J. Neural Eng., 2, 147-163. https://doi.org/10.1088/1741-2560/2/3/S01
- Ting, L.H. (2007), "Dimensional reduction in sensorimotor systems: a framework for understanding muscle coordination of posture", Prog. Brain Res., 165, 299-321. https://doi.org/10.1016/S0079-6123(06)65019-X
- Torres-Oviedo, G., Macpherson, J.M. and Ting, L.H. (2006), "Muscle synergy organization is robust across a variety of postural perturbations", J. Neurophysiol., 96(3), 1530-1546. https://doi.org/10.1152/jn.00810.2005
- Torres-Oviedo, G. and Ting, L.H. (2007), "Muscle synergies characterizing human postural responses", J. Neurophysiol., 98(4), 2144-2156. https://doi.org/10.1152/jn.01360.2006
- Todorov, E. (2004), "Optimality principles in sensorimotor control", Nat. Neurosci., 7(9), 907-915. https://doi.org/10.1038/nn1309
- Todorov, E. and Ghahramani, Z. (2003), "Unsupervised Learning of Sensory-Motor Primitives", Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, Cancun, Mexico.
- Todorov, E. and Jordan, M.I. (2002), "Optimal feedback control as a theory of motor coordination", Nat. Neurosci., 5(11), 1226-1235. https://doi.org/10.1038/nn963
- Todorov, E., Li, W. and Pan, X. (2005), "From task parameters to motor synergies: A hierarchical framework for approximately-optimal control of redundant manipulators", J. Robot Syst., 22(11), 691-710. https://doi.org/10.1002/rob.20093
- Tresch, M.C. and Bizzi, E. (1999), "Responses to spinal microstimulation in the chronically spinalized rat and their relationship to spinal systems activated by low threshold cutaneous stimulation", Exp. Brain Res., 129(3), 401-416. https://doi.org/10.1007/s002210050908
- Tresch, M.C., Cheung, V.C. and d'Avella, A. (2006), "Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets", J. Neurophysiol., 5(4), 2199-2212.
- Tresch, M.C. and Jarc, A. (2009), "The case for and against muscle synergies", Curr. Opin. Neurobiol., 19(6), 601-607. https://doi.org/10.1016/j.conb.2009.09.002
- Valero-Cuevas, F.J. (2009), "A mathematical approach to the mechanical capabilities of limbs and fingers", Adv. Exp. Med. Biol., 629, 619-633. https://doi.org/10.1007/978-0-387-77064-2_33
- Valero-Cuevas, F.J, Venkadesan, M. and Todorov, E. (2009), "Structured variability of muscle activations supports the minimal intervention principle of motor control", J. Neurophysiol., 120(1), 59-68.
- Valero-Cuevas, F.J., Yi, J.W., Brown, D., McNamara, R.V., Paul C. and Lipson, H. (2007), "The tendon network of the fingers performs anatomical computation at a macroscopic scale", IEEE T. Bio-Med. Eng., 54(6), 1161- 1166. https://doi.org/10.1109/TBME.2006.889200
- Venkadesan, M. and Valero-Cuevas, F.J. (2008), "Neural control of motion-to-force transitions with the fingertip", J. Neurosci., 28(6), 1366-1373. https://doi.org/10.1523/JNEUROSCI.4993-07.2008
- Viviani, P. and Terzuolo, C. (1982), "Trajectory determines movement dynamics", Neuroscience., 7(2), 431-417. https://doi.org/10.1016/0306-4522(82)90277-9
- Wagner, G.P., Pavlicev, M. and Cheverud, J.M. (2007), "The road to modularity", Nat. Rev. Genet., 8(12), 921-931.
- Wagner, G.P., Mezey, J. and Calabretta, R. (2005), "Natural selection and the origin of modules", (Eds. W. Callebaut, and Rasskin-Gutman, D.), Modularity: Understanding the Development and Evolution of Natural Complex Systems., MIT Press, Cambridge, MA.
- Wainwright, P.C. (2002), "Evolution of feeding motor patterns in vertebrates", Curr. Opin. Neurobiol., 12, 691-695. https://doi.org/10.1016/S0959-4388(02)00383-5
- Wang, W. and Slotine, J.J. (2005), "On partial contraction analysis for coupled nonlinear oscillators", Biol. Cybern., 92(1), 38-53. https://doi.org/10.1007/s00422-004-0527-x
- Welch, J.J. and Waxman, D. (2003), "Modularity and the cost of complexity", Evolution, 57, 1723-1734. https://doi.org/10.1111/j.0014-3820.2003.tb00581.x
- Wilson, D.M. (1961), "Central nervous control of flight in a locust", J. Exp Biol., 38, 471-490.
- Wolpaw, J.R. and Carp, J.S. (1993), "Adaptive plasticity in the spinal cord", Adv. Neurol., 59, 163-174.
- Wolpert, D.M., Ghahramani, Z. and Flanagan, J.R. (2001), "Perspectives and problems in motor learning", Trends Cogn. Sci., 5(11), 487-494. https://doi.org/10.1016/S1364-6613(00)01773-3
- Yang, J.F., Lam, T., Pang, M.Y., Lamont, E., Musselman, K. and Seinen, E. (2004), "Infant stepping: a window to the behaviour of the human pattern generator for walking", Can. J. Physiol. Pharmacol., 82(8-9), 662-674. https://doi.org/10.1139/y04-070
- Zhao, C.B., Steven, G.P. and Xie, Y.M. (1996), "General evolutionary path for fundamental natural frequencies of structural vibration problems: Towards optimum from below", Struct. Eng. Mech., 4(5), 513-527. https://doi.org/10.12989/sem.1996.4.5.513
피인용 문헌
- A novel movement-based operation method for dual-arm rescue construction machinery vol.34, pp.05, 2016, https://doi.org/10.1017/S0263574714002082