DOI QR코드

DOI QR Code

Biomimetic control for redundant and high degree of freedom limb systems: neurobiological modularity

  • Giszter, Simon F. (Neurobiology and Anatomy, Drexel University College of Medicine) ;
  • Hart, Corey B. (Neurobiology and Anatomy, Drexel University College of Medicine)
  • Received : 2010.05.18
  • Accepted : 2010.10.18
  • Published : 2011.03.25

Abstract

We review the current understanding of modularity in biological motor control and its forms, and then relate this modularity to proposed modular control structures for biomimetic robots. We note the features that are different between the robotic and the biological 'designs' with features which have evolved by natural selection, and note those aspects of biology which may be counter-intuitive or unique to the biological controls as we currently understand them. Biological modularity can be divided into kinematic modularity comprised of strokes and cycles: primitives approximating a range of optimization criteria, and execution modularity comprised of kinetic motor primitives: muscle synergies recruited by premotor drives which are most often pulsatile, and which have the biomechanical effect of instantiating a visco-elastic force-field in the limb. The relations of these identified biological elements to kinematic and force-level motor primitives employed in robot control formulations are discussed.

Keywords

References

  1. Abbott, L.F. (2006), "Where are the switches on this thing", Problems in Systems Neuroscience, (Eds. J.L. van Hemmen and T.J. Sejnowski), Oxford University Press, 423-431.
  2. Bateson, P.J. (2004), "The active role of behaviour in evolution", Biol. Philos., 19, 283-298. https://doi.org/10.1023/B:BIPH.0000024468.12161.83
  3. Berkowitz, A. (2008), "Physiology and morphology of shared and specialized spinal interneurons for locomotion and scratching", J. Neurophysiol., 99(6), 2887-901. https://doi.org/10.1152/jn.90235.2008
  4. Berniker, M., Jarc, A., Bizzi, E. and Tresch, M.C. (2009), "Simplified and effective motor control based on muscle synergies to exploit musculoskeletal dynamics", Proc. Natl. Acad. Sci. USA., 106(18), 7601-7606. https://doi.org/10.1073/pnas.0901512106
  5. Bernstein, N. (1967), The co-ordination and regulation of movements, Pergamon Press, Oxford.
  6. Bizzi, E., Mussa-Ivaldi, F.A. and Giszter, S.F. (1991), "Computations underlying the execution of movement: a biological perspective", Science, 253(5017), 287-291. https://doi.org/10.1126/science.1857964
  7. Bradley, N.S., Solanki, D. and Zhao, D. (2005), "Limb movements during embryonic development in the chick: evidence for a continuum in limb motor control antecedent to locomotion", J. Neurophysiol., 94(6), 4401-11. https://doi.org/10.1152/jn.00804.2005
  8. Bradley, N.S., Ryu, Y.U. and Lin, J. (2008), "Fast locomotor burst generation in late stage embryonic motility", J. Neurophysiol., 99(4), 1733-42. https://doi.org/10.1152/jn.01393.2007
  9. Bradley, N.S. (2003), "Connecting the dots between animal and human studies of locomotion. Focus on Infants adapt their stepping to repeated trip-inducing stimuli", J. Neurophysiol., 90(4), 2088-2089. https://doi.org/10.1152/jn.00619.2003
  10. Brookfield, J.F.Y. (2009), "Evolution and evolvability: celebrating Darwin 200", Biol. Lett., 5, 44-46. https://doi.org/10.1098/rsbl.2008.0639
  11. Brown, G.D., Yamada, S. and Sejnowski, T.J. (2001), "Independent components analysis (ICA) at the neural cocktail party", Trends Neurosci., 24, 54-63. https://doi.org/10.1016/S0166-2236(00)01683-0
  12. Burdet, E. and Milner, T.E. (1998), "Quantization of human motions and learning of accurate movements", Biol. Cybern., 78, 307-318. https://doi.org/10.1007/s004220050435
  13. Calabretta, R., Ferdinando, A.D., Wagner, G.P. and Parisi, D. (2003), "What does it take to evolve behaviorally complex organisms?", Biosystems., 69(2-3), 245-62. https://doi.org/10.1016/S0303-2647(02)00140-5
  14. Calabretta, R., Nolfi, S., Parisi, D. and Wagner, G.P. (2000), "Duplication of modules facilitates the evolution of functional specialization", Artif. Life., 6(1), 69-84. https://doi.org/10.1162/106454600568320
  15. Callebaut, W. and Rasskin-Gutman, D. (2005), Modularity: Understanding the Development and Evolution of Natural Complex Systems., MIT Press.
  16. Cappellini, G., Ivanenko, Y.P., Poppele, R.E. and Lacquaniti, F. (2006), "Motor patterns in human walking and running", J. Neurophysiol., 95(6), 3426-3437. https://doi.org/10.1152/jn.00081.2006
  17. Chabra, M. and Jacobs, R.A. (2006), "Properties of synergies arising from a theory of optimal motor behavior", Neural Comput.,18, 2320-2342. https://doi.org/10.1162/neco.2006.18.10.2320
  18. Cheung, V.C., Piron, L., Agostini, M., Silvoni, S., Turolla, A. and Bizzi, E. (2009), "Stability of muscle synergies for voluntary actions after cortical stroke in humans", Proc. Natl. Acad. Sci. USA., 106(46), 19563-19568. https://doi.org/10.1073/pnas.0910114106
  19. Clarac, F., Brocard, F. and Vinay, L. (2004), "The maturation of locomotor networks", Prog. Brain. Res., 143, 57-66. https://doi.org/10.1016/S0079-6123(03)43006-9
  20. Clewley, R.H., Guckenheimer, J.M. and Valero-Cuevas, F.J. (2008), "Estimating effective degrees of freedom in motor systems", IEEE T. Bio-med. Eng., 55(2), 430-442. https://doi.org/10.1109/TBME.2007.903712
  21. Colgate, J.E. and Hogan, N. (1988), "Robust control of dynamically interacting systems", Int. J. Control, 48(1), 65-88. https://doi.org/10.1080/00207178808906161
  22. Collins, J.J. (1995), "The redundant nature of locomotor optimization laws", J. Biomech., 28, 251-267. https://doi.org/10.1016/0021-9290(94)00072-C
  23. Conditt, M.A. and Mussa-Ivaldi, F.A. (1999), "Central representation of time during motor learning", Proc. Natl. Acad. Sci. U.S.A., 96(20), 11625-11630. https://doi.org/10.1073/pnas.96.20.11625
  24. Dasen, J.S., Liu, J.P. and Jessell, T.M. (2003), "Motor neuron columnar fate imposed by sequential phases of Hox-c activity", Nature, 425, 926-933. https://doi.org/10.1038/nature02051
  25. d'Avella, A. and Bizzi, E. (2005), "Shared and specific muscle synergies in natural motor behaviors", Proc. Natl. Acad. Sci. U.S.A., 102(8), 3076-3081. https://doi.org/10.1073/pnas.0500199102
  26. d'Avella, A., Fernandez, L., Portone, A. and Lacquaniti, F. (2008), "Modulation of phasic and tonic muscle synergies with reaching direction and speed", J. Neurophysiol., 100(3), 1433-1454. https://doi.org/10.1152/jn.01377.2007
  27. Dominici, N., Ivanenko, Y.P. and Lacquaniti, F. (2007), "Control of foot trajectory in walking toddlers: adaptation to load changes", J. Neurophysiol., 97(4), 2790-2801. https://doi.org/10.1152/jn.00262.2006
  28. Flash, T. and Hochner, B. (2005), "Motor primitives in vertebrates and invertebrates", Curr. Opin. Neurobiol., 15(6), 660-666. https://doi.org/10.1016/j.conb.2005.10.011
  29. Flash, T. and Hogan, N. (1985), "The coordination of arm movements: an experimentally confirmed mathematical model", J. Neurosci., 5(7), 1688-703.
  30. Giszter, S.F. (2008), "Motor Primitives", Encyclopedia of Neuroscience,(Ed. Squire, L.R.), Academic Press, Oxford.
  31. Giszter, S.F., Mussa-Ivaldi, F.A. and Bizzi, E. (1993), "Convergent force fields organized in the frog spinal cord", J. Neurosci., 13, 467-491.
  32. Giszter, S.F. and Kargo, W.J. (2000), "Conserved temporal dynamics and vector superposition of primitives in frog wiping reflexes during spontaneous extensor deletions", Neurocomputing, 32-33, 775-783. https://doi.org/10.1016/S0925-2312(00)00243-5
  33. Giszter, S.F. and Kargo, W.J. (2001), "Modeling of dynamic controls in the frog wiping reflex: force-field level controls", Neurocomputing, 38-40, 1239-1247. https://doi.org/10.1016/S0925-2312(01)00467-2
  34. Giszter, S.F., Moxon, K.A., Rybak, I. and Chapin, J.K. (2000), "A neurobiological perspective on design of humanoid robots and their components", IEEE Intell. Syst., 15(4), 64-69. https://doi.org/10.1109/5254.867914
  35. Giszter, S.F., Moxon, K.A., Rybak, I. and Chapin, J.K. (2001), "Neurobiological and neurorobotic approaches to design of a controller for a humanoid motor system", Robot. Auton. Syst., 37, 219-235. https://doi.org/10.1016/S0921-8890(01)00159-2
  36. Giszter, S.F., Patil, V. and Hart, C.B. (2007b), "Primitives, premotor drives, and pattern generation: a combined computational and neuroethological perspective", Prog. Brain. Res., 165, 323-346. https://doi.org/10.1016/S0079-6123(06)65020-6
  37. Giszter, S.F., Hart, C.B. and Silfies, S. (2010), "Spinal cord modularity: evolution, development, and optimization and the possible relevance to low back pain in man", Exp. Brain. Res., 200(3-4), 283-306. https://doi.org/10.1007/s00221-009-2016-x
  38. Gorassini, M.A., Prochazka, A., Hiebert, G.W. and Gauthier, M.J. (1994), "Corrective responses to loss of ground support during walking. I. Intact cats", J. Neurophysiol., 71(2), 603-610. https://doi.org/10.1152/jn.1994.71.2.603
  39. Gottlieb, G.L. (1998), "Muscle activation patterns during two types of voluntary single-joint movement", J. Neurophysiol., 80, 1860-1867. https://doi.org/10.1152/jn.1998.80.4.1860
  40. Grillner, S., Perret, C. and Zangger, P. (1976), "Central generation of locomotion in the spinal dogfish", Brain Res. 109(2), 255-269. https://doi.org/10.1016/0006-8993(76)90529-1
  41. Hart, C.B. and Giszter, S.F. (2004), "Modular premotor drives and unit bursts as primitives for frog motor behaviors", J. Neurosci, 24(22), 5269-82. https://doi.org/10.1523/JNEUROSCI.5626-03.2004
  42. Hart, C.B. and Giszter, S.F. (2010), "A neural basis for motor primitives in the spinal cord", J. Neurosci, 30(4), 1322-1336. https://doi.org/10.1523/JNEUROSCI.5894-08.2010
  43. Hogan, N. (1984), "An organizing principle for a class of voluntary movements", J. Neurosci, 4(11), 2745-2754.
  44. Hogan, N. (1985), "The mechanics of multi-joint posture and movement control", Biol. Cybern., 52(5), 315-331. https://doi.org/10.1007/BF00355754
  45. Hogan, N. and Sternad, D. (2007), "On rhythmic and discrete movements: reflections, definitions and implications for motor control", Exp. Brain Res., 181(1), 13-30. https://doi.org/10.1007/s00221-007-0899-y
  46. Huang, X. and Xie, Y.M. (2010), "Evolutionary topology optimization of geometrically and materially nonlinear structures under prescribed design load", Struct. Eng. Mech.,. 34(5), 581-595. https://doi.org/10.12989/sem.2010.34.5.581
  47. Ijspeert, A., Nakanishi, J. and Schaal, S. (2003), "Learning attractor landscapes for learning motor primitives", (Eds. Becker, S., Thrun, S., Obermayer, K.), Advances in Neural Information Processing Systems 15, MIT Press, Cambridge, MA.
  48. Ivanenko, Y.P., Dominici, N., Cappellini, G. and Lacquaniti, F. (2005), "Kinematics in newly walking toddlers does not depend upon postural stability", J. Neurophysiol., 94(1), 754-763. https://doi.org/10.1152/jn.00088.2005
  49. Kargo, W.J. and Giszter, S.F. (2000), "Rapid corrections of aimed movements by combination of force-field primitives", J. Neurosci., 20, 409-426.
  50. Kargo, W.J. and Giszter, S.F. (2008), "Individual premotor drive pulses, not time-varying synergies, are the units of adjustment for limb trajectories constructed in spinal-cord", J. Neurosci., 28(10), 2409-2425. https://doi.org/10.1523/JNEUROSCI.3229-07.2008
  51. Kargo, W.J., Ramakrishnan, A., Hart, C.B., Rome, L. and Giszter, S.F. (2009), "A simple experimentally-based model using proprioceptive regulation of motor primitives captures adjusted trajectory formation in spinal frogs", J. Neurophysiol., 103(1), 573-590.
  52. Kargo, W.J. and Rome, L. (2002), "Functional morphology of proximal hindlimb muscles in the frog rana Pipiens", J. Exp. Biol., 205(14), 1987-2004.
  53. Karniel, A. and Mussa-Ivaldi, F.A. (2003), "Sequence, time, or state representation: how does the motor control system adapt to variable environments?", Biol. Cybern., 89(1), 10-21.
  54. Kelso, J.A., Holt, K.G., Rubin, P. and Kugler, P.N. (1981), "Patterns of human interlimb coordination emerge from the properties of non-linear, limit cycle oscillatory processes: theory and data", J. Mot. Behav., 13(4), 226-261. https://doi.org/10.1080/00222895.1981.10735251
  55. Kiehn, O., Hounsgard, J. and Sillar, K.T. (1997), "Basic building blocks of vertebrate CPGs", (Eds. Stein, P.S.G., Grillner, S, Selverston, A.I and Stuart, D.G), Neurons, Networks and Motor Behavior, MIT press, Cambridge, MA, 47-60.
  56. Koditschek, D.E., Full, R.J. and Buehler, M. (2004), "Mechanical aspects of legged locomotion control", Arthropod Struct. Dev., 33(3), 251-272. https://doi.org/10.1016/j.asd.2004.06.003
  57. Krishnamoorty, C.S. (2001), "Structural optimization in practice: Potential applications of genetic algorithms", Struct. Eng. Mech., 11(2), 151-170 https://doi.org/10.12989/sem.2001.11.2.151
  58. Krouchev, N., Kalaska, J.F. and Drew, T. (2006), "Sequential activation of muscle synergies during locomotion in the intact cat as revealed by cluster analysis and direct decomposition", J. Neurophysiol., 96(4), 1991-2010. https://doi.org/10.1152/jn.00241.2006
  59. Kuo, A.D. (2002), "The relative roles of feedforward and feedback in the control of rhythmic movements", Motor Control., 6(2), 129-145. https://doi.org/10.1123/mcj.6.2.129
  60. Kutch, J.J., Kuo, A.D., Bloch, A.M. and Rymer, W.Z. (2008), "Endpoint force fluctuations reveal flexible rather than synergistic patterns of muscle cooperation", J. Neurophysiol., 100(5), 2455-2471. https://doi.org/10.1152/jn.90274.2008
  61. Lafreniere-Roula, M. and McCrea, D.A. (2005), "Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator", J. Neurophysiol., 94(2), 1120-1132. https://doi.org/10.1152/jn.00216.2005
  62. Lemay, M.A. and Grill, W.M. (2004), "Modularity of motor output evoked by intraspinal microstimulation in cats", J. Neurophysiol., 91(1), 502-514. https://doi.org/10.1152/jn.00235.2003
  63. Liu, D. and Todorov, E. (2007), "Evidence for the flexible sensorimotor strategies predicted by optimal feedback control", J. Neurosci., 27(35), 9354-9368. https://doi.org/10.1523/JNEUROSCI.1110-06.2007
  64. Lockhart, D.B. and Ting, L.H. (2007), "Optimal sensorimotor transformations for balance", Nat. Neurosci., 10(10): 1329-1336. https://doi.org/10.1038/nn1986
  65. Loeb, G.E. (1999), "Asymmetry of hindlimb muscle activity and cutaneous reflexes after tendon transfers in kittens", J. Neurophysiol., 82(6), 3392-3394. https://doi.org/10.1152/jn.1999.82.6.3392
  66. Loeb, G.E. (2000), "Overcomplete musculature or underspecified tasks?" Mot. Control, 4, 81-83. https://doi.org/10.1123/mcj.4.1.81
  67. Loeb, G.E., Brown, I.E. and Cheng, E.J. (1999), "A hierarchical foundation for models of sensorimotor control", Exp. Brain Res., 126(1), 1-18. https://doi.org/10.1007/s002210050712
  68. Loeb, G.E., He, J. and Levine, W.S. (1989), "Spinal cord circuits: are they mirrors of musculoskeletal mechanics?", J. Mot. Behav., 21(4), 473-491. https://doi.org/10.1080/00222895.1989.10735495
  69. Loeb, G.E., Levine, W.S. and He, J. (1990), "Understanding sensorimotor feedback through optimal control", Cold Spring Harb Symp Quant Biol. 55, 791-803. https://doi.org/10.1101/SQB.1990.055.01.074
  70. Marder, E. and Bucher, D. (2001), "Central pattern generators and the control of rhythmic Movements", Curr. Biology, 11, 986-996. https://doi.org/10.1016/S0960-9822(01)00581-4
  71. Martin, J.H., Cooper, S.E. and Ghez, C. (1995), "Kinematic analysis of reaching in the cat", Exp. Brain Res. 102(3), 379-392.
  72. McCrea, D.A. and Rybak, I.A. (2007), "Modeling the mammalian locomotor CPG: insights from mistakes and perturbations", Prog. Brain Res., 165, 235-253. https://doi.org/10.1016/S0079-6123(06)65015-2
  73. Mirone, G. (2009), "Ni-Ti actuators and genetically optimized compliant ribs for an adaptive wing", Smart Struct. Syst., 5(6), 645-662. https://doi.org/10.12989/sss.2009.5.6.645
  74. Muceli, S., Boye, A.T., d'Avella, A. and Farina, D. (2010), "Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane", J Neurophysiol., 103(3), 1532-1542. https://doi.org/10.1152/jn.00559.2009
  75. Mussa-Ivaldi, F.A. (1992), "From basis functions to basis fields: Using vector primitives to capture vector patterns", Biol. Cybern., 67, 479-489. https://doi.org/10.1007/BF00198755
  76. Mussa-Ivaldi, F.A. and Giszter, S.F. (1992), "Vector field approximation: a computational paradigm for motor control and learning", Biol. Cybern., 67, 491-500. https://doi.org/10.1007/BF00198756
  77. Mussa-Ivaldi, F.A. and Hogan, N. (1991), "Integrable solutions of kinematic redundancy via impedance control", Int. J. Robot. Res.,10, 481-491. https://doi.org/10.1177/027836499101000504
  78. Mussa-Ivaldi, F.A. and Bizzi, E. (2000), "Motor learning through the combination of primitives", Philos. T. R. Soc. B., 355(1404), 1755-1769. https://doi.org/10.1098/rstb.2000.0733
  79. Mussa-Ivaldi, F.A., Giszter, S.F. and Bizzi, E. (1994), "Linear combination of primitives in vertebrate motor control", Proc. Nat. Acad. Sci., USA., 91, 7534-7538. https://doi.org/10.1073/pnas.91.16.7534
  80. Nishikawa, K.C., Anderson, C.W., Deban, S.M. and O'Reilly, J.C. (1992), "The evolution of neural circuits controlling feeding behavior in frogs", Brain Behav. Evol., 40(2-3), 125-140. https://doi.org/10.1159/000113908
  81. Pai, D.K. (2010), "Muscle mass in musculoskeletal models", J. Biomech., 43(11), 2093-2098. https://doi.org/10.1016/j.jbiomech.2010.04.004
  82. Pang, M.Y., Lam, T. and Yang, J.F. (2003), "Infants adapt their stepping to repeated trip-inducing stimuli", J. Neurophysiol., 90(4), 2731-2740. https://doi.org/10.1152/jn.00407.2003
  83. Polyakov, F., Stark, E., Drori, R., Abeles, M. and Flash, T. (2009), "Parabolic movement primitives and cortical states: merging optimality with geometric invariance", Biol. Cybern., 100(2), 159-184. https://doi.org/10.1007/s00422-008-0287-0
  84. Prinz, A.A. (2006), "Insights from models of rhythmic motor systems", Curr. Opin. Neurobiol., 16(6): 615-620. https://doi.org/10.1016/j.conb.2006.10.001
  85. Quevedo, J., Stecina, K., Gosgnach, S. and McCrea, D.A. (2005), "Stumbling corrective reaction during fictive locomotion in the cat", J. Neurophysiol., 94(3), 2045-2052. https://doi.org/10.1152/jn.00175.2005
  86. Raibert, M.H. (1986), Legged Robots that Balance., MIT Press.
  87. Rajasekaran, S. (2010), "Optimal laminate sequence of thin-walled composite beams of generic section using evolution strategies", Struct. Eng. Mech., 34(5), 597-609. https://doi.org/10.12989/sem.2010.34.5.597
  88. Richardson, A., Tresch, M.C., Bizzi, E. and Slotine, J.J. (2005), "Stability analysis of nonlinear muscle dynamics using contraction theory", Conf. Proc. IEEE Eng. Med. Biol. Soc. 5, 4986-4989.
  89. Richardson, A.G., Slotine, J.J., Bizzi, E. and Tresch, M.C. (2005), "Intrinsic musculoskeletal properties stabilize wiping movements in the spinalized frog", J. Neurosci., 25(12), 3181-3191. https://doi.org/10.1523/JNEUROSCI.4945-04.2005
  90. Rohrer, B., Fasoli, S., Krebs, H.I., Hughes, R., Volpe, B., Frontera, W.R., Stein, J. and Hogan, N. (2002), "Smoothness during stroke recovery", J. Neurosci., 22(18), 8297-8304.
  91. Sanger, T.D. (2000), "Human arm movements described by a low-dimensional superposition of principal components", J. Neurosci., 20(3), 1066-1072.
  92. Sanger, T.D. (1994), "Optimal unsupervised motor learning for dimensionality reduction of nonlinear control systems", IEEE T. Neural Networ., 5(6), 965-973. https://doi.org/10.1109/72.329694
  93. Schaal, S., Ijspeert, A. and Billard, A. (2003), "Computational approaches to motor learning by imitation", Philos. T. R. Soc. B., 358(1431), 537-547. https://doi.org/10.1098/rstb.2002.1258
  94. Schaal, S. and Schweighofer, N. (2005), "Computational motor control in humans and robots", Curr. Opin. Neurobiol., 15(6), 675-682. https://doi.org/10.1016/j.conb.2005.10.009
  95. Schouenborg, J. (2004), "Learning in sensorimotor circuits", Curr. Opin. Neurobiol., 14(6), 693-697. https://doi.org/10.1016/j.conb.2004.10.009
  96. Sherrington, C.S. (1961), The integrative action of the nervous system, Yale University Press, New Haven, CT.
  97. Slotine, J.J. and Lohmiller, W. (2001), "Modularity, evolution, and the binding problem: a view from stability theory", Neural Networ., 14(2), 137-145. https://doi.org/10.1016/S0893-6080(00)00089-7
  98. Sosnik, R., Hauptmann, B., Karni, A. and Flash, T. (2004), "When practice leads to co-articulation: the evolution of geometrically defined movement primitives", Exp. Brain Res., 156, 422-438. https://doi.org/10.1007/s00221-003-1799-4
  99. Tin, C. and Poon, C.S. (2005), "Internal models in sensorimotor integration: perspectives from adaptive control theory", J. Neural Eng., 2, 147-163. https://doi.org/10.1088/1741-2560/2/3/S01
  100. Ting, L.H. (2007), "Dimensional reduction in sensorimotor systems: a framework for understanding muscle coordination of posture", Prog. Brain Res., 165, 299-321. https://doi.org/10.1016/S0079-6123(06)65019-X
  101. Torres-Oviedo, G., Macpherson, J.M. and Ting, L.H. (2006), "Muscle synergy organization is robust across a variety of postural perturbations", J. Neurophysiol., 96(3), 1530-1546. https://doi.org/10.1152/jn.00810.2005
  102. Torres-Oviedo, G. and Ting, L.H. (2007), "Muscle synergies characterizing human postural responses", J. Neurophysiol., 98(4), 2144-2156. https://doi.org/10.1152/jn.01360.2006
  103. Todorov, E. (2004), "Optimality principles in sensorimotor control", Nat. Neurosci., 7(9), 907-915. https://doi.org/10.1038/nn1309
  104. Todorov, E. and Ghahramani, Z. (2003), "Unsupervised Learning of Sensory-Motor Primitives", Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, Cancun, Mexico.
  105. Todorov, E. and Jordan, M.I. (2002), "Optimal feedback control as a theory of motor coordination", Nat. Neurosci., 5(11), 1226-1235. https://doi.org/10.1038/nn963
  106. Todorov, E., Li, W. and Pan, X. (2005), "From task parameters to motor synergies: A hierarchical framework for approximately-optimal control of redundant manipulators", J. Robot Syst., 22(11), 691-710. https://doi.org/10.1002/rob.20093
  107. Tresch, M.C. and Bizzi, E. (1999), "Responses to spinal microstimulation in the chronically spinalized rat and their relationship to spinal systems activated by low threshold cutaneous stimulation", Exp. Brain Res., 129(3), 401-416. https://doi.org/10.1007/s002210050908
  108. Tresch, M.C., Cheung, V.C. and d'Avella, A. (2006), "Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets", J. Neurophysiol., 5(4), 2199-2212.
  109. Tresch, M.C. and Jarc, A. (2009), "The case for and against muscle synergies", Curr. Opin. Neurobiol., 19(6), 601-607. https://doi.org/10.1016/j.conb.2009.09.002
  110. Valero-Cuevas, F.J. (2009), "A mathematical approach to the mechanical capabilities of limbs and fingers", Adv. Exp. Med. Biol., 629, 619-633. https://doi.org/10.1007/978-0-387-77064-2_33
  111. Valero-Cuevas, F.J, Venkadesan, M. and Todorov, E. (2009), "Structured variability of muscle activations supports the minimal intervention principle of motor control", J. Neurophysiol., 120(1), 59-68.
  112. Valero-Cuevas, F.J., Yi, J.W., Brown, D., McNamara, R.V., Paul C. and Lipson, H. (2007), "The tendon network of the fingers performs anatomical computation at a macroscopic scale", IEEE T. Bio-Med. Eng., 54(6), 1161- 1166. https://doi.org/10.1109/TBME.2006.889200
  113. Venkadesan, M. and Valero-Cuevas, F.J. (2008), "Neural control of motion-to-force transitions with the fingertip", J. Neurosci., 28(6), 1366-1373. https://doi.org/10.1523/JNEUROSCI.4993-07.2008
  114. Viviani, P. and Terzuolo, C. (1982), "Trajectory determines movement dynamics", Neuroscience., 7(2), 431-417. https://doi.org/10.1016/0306-4522(82)90277-9
  115. Wagner, G.P., Pavlicev, M. and Cheverud, J.M. (2007), "The road to modularity", Nat. Rev. Genet., 8(12), 921-931.
  116. Wagner, G.P., Mezey, J. and Calabretta, R. (2005), "Natural selection and the origin of modules", (Eds. W. Callebaut, and Rasskin-Gutman, D.), Modularity: Understanding the Development and Evolution of Natural Complex Systems., MIT Press, Cambridge, MA.
  117. Wainwright, P.C. (2002), "Evolution of feeding motor patterns in vertebrates", Curr. Opin. Neurobiol., 12, 691-695. https://doi.org/10.1016/S0959-4388(02)00383-5
  118. Wang, W. and Slotine, J.J. (2005), "On partial contraction analysis for coupled nonlinear oscillators", Biol. Cybern., 92(1), 38-53. https://doi.org/10.1007/s00422-004-0527-x
  119. Welch, J.J. and Waxman, D. (2003), "Modularity and the cost of complexity", Evolution, 57, 1723-1734. https://doi.org/10.1111/j.0014-3820.2003.tb00581.x
  120. Wilson, D.M. (1961), "Central nervous control of flight in a locust", J. Exp Biol., 38, 471-490.
  121. Wolpaw, J.R. and Carp, J.S. (1993), "Adaptive plasticity in the spinal cord", Adv. Neurol., 59, 163-174.
  122. Wolpert, D.M., Ghahramani, Z. and Flanagan, J.R. (2001), "Perspectives and problems in motor learning", Trends Cogn. Sci., 5(11), 487-494. https://doi.org/10.1016/S1364-6613(00)01773-3
  123. Yang, J.F., Lam, T., Pang, M.Y., Lamont, E., Musselman, K. and Seinen, E. (2004), "Infant stepping: a window to the behaviour of the human pattern generator for walking", Can. J. Physiol. Pharmacol., 82(8-9), 662-674. https://doi.org/10.1139/y04-070
  124. Zhao, C.B., Steven, G.P. and Xie, Y.M. (1996), "General evolutionary path for fundamental natural frequencies of structural vibration problems: Towards optimum from below", Struct. Eng. Mech., 4(5), 513-527. https://doi.org/10.12989/sem.1996.4.5.513

Cited by

  1. A novel movement-based operation method for dual-arm rescue construction machinery vol.34, pp.05, 2016, https://doi.org/10.1017/S0263574714002082