참고문헌
- Barooah, P. and Rey, N. (2002), "Closed loop control of a shape memory alloy actuation system for variable area fan nozzle", Proceedings of the SPIE International Symposium on Smart Structures and Materials, 4693, 384- 395.
- Barbarino, S., Pecora, R., Lecce, L., Concilio, A., Ameduri, S. and Calvi, E. (2009), "A novel SMA-based concept for airfoil structural morphing", J. Mater. Eng. Perform., 18(5-6), 696-705. https://doi.org/10.1007/s11665-009-9356-3
- Calkins, F.T., Mabe, J.H. and Butler, G.W. (2006), "Boeing's variable geometry chevron: Morphing aerospace structures for jet noise reduction", Proceedings of the SPIE - The International Society for Optical Engineering, 6171.
- Choi, S.B., Han, Y.M. and Cheong, C.C. (2001), "Force tracking control of a flexible gripper featuring shape memory alloy actuators", Mechatronics, 11(6), 677-690. https://doi.org/10.1016/S0957-4158(00)00034-9
- Dayananda, G.N., Varughese, B. and Subba Rao, M. (2007), "Shape memory alloy based smart landing gear for an airship", J. Aircraft, 44(5), 1469-1477. https://doi.org/10.2514/1.26811
- Epps, J. and Chopra, I. (2001), "In-flight tracking of helicopter rotor blades using shape memory alloy actuators", Smart Mater. Struct., 10(2001), 104-111. https://doi.org/10.1088/0964-1726/10/1/310
- Grant, D. and Hayward, V. (1997), "Variable structure control of shape memory alloy actuator", IEEE Contr. Syst. Mag., 17(3), 80-88. https://doi.org/10.1109/37.588180
- Majima, S., Kodama, K. and Hasegawa, T. (2001), "Modeling of shape memory alloy actuator and tracking control system with the model", IEEE T. Contr. Syst. T., 9(1), 54-59. https://doi.org/10.1109/87.896745
- Peng, F., Jiang, X., Hu, Y. and Ng, A. (2009), "Application of SMA in membrane structure shape control", IEEE T. Aero. Elec. Sys., 45(1), 85-93. https://doi.org/10.1109/TAES.2009.4805265
- Pitt, D.M., Dune, J.P., White, E.V. and Garcia, E. (2001), "Wind tunnel demonstration of the SMAPON smart inlet", Proceedings of the SPIE International Symposium on Smart Structures and Materials, 4332, 345-356.
- Rey, N.M., Tillman, G., Miller, R.M., Wynosky, T., Larkin, M.J., Flamm, J.D. and Bangert, L.S. (2001), "Shape memory alloy actuation for a variable area fan nozzle", Proceedings of the SPIE International Symposium on Smart Structures and Materials, 4332, 371-382.
- Song, G. and Mukherjee, R. (1998), "A comparative study of conventional non-smooth time-invariant and smooth time-varying robust compensators", IEEE T. Contr. Syst. T., 6(4), 571-576. https://doi.org/10.1109/87.701355
- Song, G. and Quinn, D. (2000), "Robust tracking control a shape memory alloy wire actuator", Proceedings of the Symposium on Control of Vibration and Noise at ASME International Mechanical Engineering Congress and Exposition.
- Strelec, J.K., Lagoudas, D.C., Khan, M.A. and Yen, J. (2003), "Design and implementation of a shape memory alloy actuated reconfigurable airfoil", J. Intel. Mater. Syst. Str., 14(4-5), 257-273. https://doi.org/10.1177/1045389X03034687
- Wolf, W. and Gunter, P. (2001), "Shape adaptive structures for smart airfoils", Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Baden-Baden, Germany, August.
피인용 문헌
- Validation of a smart structural concept for wing-flap camber morphing vol.14, pp.4, 2014, https://doi.org/10.12989/sss.2014.14.4.659
- Morphing aircraft based on smart materials and structures: A state-of-the-art review vol.27, pp.17, 2016, https://doi.org/10.1177/1045389X16629569
- Control of an innovative super-capacitor-powered shape-memory-alloy actuated accumulator for blowout preventer vol.31, pp.01, 2017, https://doi.org/10.1142/S0217984916504261
- Experimental analyses of dynamical systems involving shape memory alloys vol.15, pp.6, 2015, https://doi.org/10.12989/sss.2015.15.6.1521
- Elucidating Multiscale Periosteal Mechanobiology: A Key to Unlocking the Smart Properties and Regenerative Capacity of the Periosteum? vol.19, pp.2, 2013, https://doi.org/10.1089/ten.teb.2012.0216
- Use of load generated by a shape memory alloy for its position control with a neural network estimator vol.20, pp.11, 2014, https://doi.org/10.1177/1077546313481000
- Servo control of an under actuated system using antagonistic shape memory alloy vol.14, pp.4, 2014, https://doi.org/10.12989/sss.2014.14.4.643
- Shape memory alloy actuator design: CASMART collaborative best practices and case studies vol.10, pp.1, 2014, https://doi.org/10.1007/s10999-013-9227-9
- Synthetic bio-actuators and their applications in biomedicine vol.7, pp.3, 2011, https://doi.org/10.12989/sss.2011.7.3.185
- Modular and versatile platform for the benchmarking of modern actuators for robots vol.11, pp.2, 2011, https://doi.org/10.12989/sss.2013.11.2.135
- Numerical Simulation and Experimental Study of a Simplified Force-Displacement Relationship in Superelastic SMA Helical Springs vol.19, pp.1, 2019, https://doi.org/10.3390/s19010050