DOI QR코드

DOI QR Code

A numerical solution for a finite internally cracked plate using hybrid crack element method

  • Chen, Y.Z. (Division of Engineering Mechanics, Jiangsu University)
  • Received : 2011.05.25
  • Accepted : 2011.11.02
  • Published : 2011.12.25

Abstract

This paper provides a numerical solution for a finite internally cracked plate using hybrid crack element method (HCE). In the formulation, an inclined crack is placed in any place of a rectangular element and the complex variable method is used. The complex potentials are expressed in a series form, and several undetermined coefficients are involved. The complex potentials for the cracked rectangle are first suggested in this paper. Based on a variational principle, the element stiffness matrix can be evaluated. The next steps are same as in the usual finite element method. Several numerical examples with computed stress intensity factor and T-stress are presented.

Keywords

References

  1. Atluri, S.N., Gallagher, R.H. and Zienkewicz, O.C. (Ed.) (1983), Hybrid and Mixed Finite Element Methods, John Wiley& Son, Chichester.
  2. Bathe, K.J. (1996), Finite Element Procedures, Prentice-Hall, Englewood-Cliffs.
  3. Cen, S., Zhou, M.J. and Fu, X.R. (2011), "A 4-node hybrid stress-function (HS-F) plane element with drilling degrees of freedom less sensitive to severe mesh distortions", Comput. Struct. 89, 517-528. https://doi.org/10.1016/j.compstruc.2010.12.010
  4. Chen, J.T., Chen, K.H. Yeih, W. and Shieh, N.C. (1998), "Dual boundary element analysis for cracked bars under torsion", Eng. Comput., 15, 732-749. https://doi.org/10.1108/02644409810231871
  5. Chen, J.T. and Hong, H.K. (1999), "Review of dual boundary element methods with emphasis on hypersingular integrals and divergent series", ASME Appl. Mech. Rev., 52, 17-33. https://doi.org/10.1115/1.3098922
  6. Chen, Y.Z. (1983), "An investigation of the stress intensity factor for a finite internally cracked plate by using variational method", Eng. Fract. Mech. 17, 387-394. https://doi.org/10.1016/0013-7944(83)90035-8
  7. Chen, Y.Z,, Hasebe. N. and Lee, K.Y. (2003), Multiple Crack Problems in Elasticity, WIT Press, Southampton.
  8. Chen, Y.Z., Lin, X.Y. and Wang, Z.X. (2008), "Evaluation of the T-stress and stress intensity factor for a cracked plate in general case using eigenfunction expansion variational method", Fatigue Fract. Eng. Mat. Struct., 31, 478-487. https://doi.org/10.1111/j.1460-2695.2008.01244.x
  9. Cheung, Y.K. and Chen, Y.Z. (1991), "Hybrid finite element formulation in plane elasticity by using complex variable function", Proceedings of the Asian Pacific Conference on Computational Mechanics, 1149-1155.
  10. Choi. N., Choo, Y.S. and Lee, B.C. (2006), "A hybrid Trefftz plane elasticity element with drilling degrees of freedom", Comput. Meth. Appl. Mech. Eng., 195, 4095-4105. https://doi.org/10.1016/j.cma.2005.07.016
  11. Day, M.L. and Yang, T.Y. (1982), "A mixed variational principle for finite element analysis", Int. J. Numer. Meth. Eng., 18, 1213-1230. https://doi.org/10.1002/nme.1620180808
  12. Dhanasekar, M., Han, J.J. and Qin, Q.H. (2006), "A hybrid-Trefftz element containing an elliptic hole", Finite Elem. Anal. Des, 42, 1314-1323. https://doi.org/10.1016/j.finel.2006.06.008
  13. Hong, H.K. and Chen, J.T. (1988), "Derivations of integral equations of elasticity", ASCE J. Eng. Mech. 6, 1028-1044.
  14. Hu, H.C. (1955), "On some variational principles in the theory of elasticity and plasticity", Scientia Sinica, 4, 33-54.
  15. Karihaloo, B.L. and Xiao, Q.Z. (2001), "Accurate determination of the coefficients of elastic tip asymptotic field by a hybrid crack element with p-adaptivity", Eng. Frcat. Mech., 68, 1609-1630. https://doi.org/10.1016/S0013-7944(01)00063-7
  16. Long, Y.Q., Cen, S. and Long, Z.F. (2009), Advanced Finite Element Method in Structural Engineering, Springer-Verlag GmbH, Tsinghua University Press Berlin, Heidelberg, Beijing.
  17. Muskhelishvili, N.I. (1963), Some Basic Problems of Mathematical Theory of Elasticity, Noordhoff, Groningen.
  18. Murakami, Y. (1987), Stress Intensity Factors Handbook, Vol. 2, Pergamon, Oxford.
  19. Pian, T.H.H. (1964), "Derivation of element stiffness matrices by assumed stress distribution", AIAA J., 2, 1333-1336. https://doi.org/10.2514/3.2546
  20. Pian, T.H.H. and Chen, D.P. (1982), "Alternative ways for formulation of hybrid stress elements", Int. J. Numer. Meth. Eng., 18, 1679-1684. https://doi.org/10.1002/nme.1620181107
  21. Pian, T.H.H., Chen, D.P. and King, D. (1983), "A new formulation of hybrid/mixed finite element", Comput. Struct., 16, 1-4.
  22. Sze, K.Y., Liu, G.H. and Fan, H. (2010), "Four- and eight-node hybrid-Trefftz quadrilateral finite element models for helmholtz problem", Comput. Meth. Appl. Mech. Eng., 199, 598-614. https://doi.org/10.1016/j.cma.2009.10.012
  23. Tong, P., Pian, T.H.H. and Lasry, S.J. (1973), "A hybrid-element approach to crack problems in plane elasticity", Int. J. Numer. Meth. Eng., 7, 297-308. https://doi.org/10.1002/nme.1620070307
  24. Tong, P. and Rossettos, J.N. (1977), Finite-element Method, The MIT Press, Cambridge.
  25. Washizu, K. (1982), Variational Methods in Elasticity and Plasticity Pergamon, Oxford.
  26. Wisniewski, K. and Turska, E. (2009), "Improved 4-node Hu-Washizu elements based on skew coordinates", Comput. Struct., 87, 407-424. https://doi.org/10.1016/j.compstruc.2009.01.011
  27. Xiao, Q.Z., Karihaloo, B.L. and Liu, X.Y. (2004), "Direct determination of SIF and higher order terms of mixed mode cracks by a hybrid crack element", Inter. J. Fract., 125, 207-225. https://doi.org/10.1023/B:FRAC.0000022229.54422.13
  28. Xiao, Q.Z. Karihaloo, B.L. (2007), "Implementation of hybrid crack element on a general finite element mesh and in combination with XFEM", Comput. Meth. Appl. Mech. Eng., 196, 1864-1873. https://doi.org/10.1016/j.cma.2006.09.022

Cited by

  1. A new numerical modelling for evaluating the stress intensity factors in 3-D fracture analysis vol.43, pp.3, 2012, https://doi.org/10.12989/sem.2012.43.3.321