참고문헌
- Birman, V. (1986), "On the effects of nonlinear elastic foundation on free vibration of beams", ASME J. Appl. Mech., 53, 471-473. https://doi.org/10.1115/1.3171790
- Chen, L.Q. and Yang, X.D. (2005a), "Steady state response of axially moving viscoelastic beams with pulsating speed: comparison of two nonlinear models", Int. J. Solids. Struct., 42, 37-50. https://doi.org/10.1016/j.ijsolstr.2004.07.003
- Chen, L.Q. and Yang, X.D. (2006), "Vibration and stability of an axially moving viscoelastic beam with hybrid supports", Eur. J. Mech., 25, 996-1008. https://doi.org/10.1016/j.euromechsol.2005.11.010
- Chen, L.Q., Zhang, N.H. and Zu, J.W. (2002), "Bifurcation and chaos of an axially moving visco-elastic strings", Chaos Soliton. Fract., 29, 81-90.
- Chen, L.Q. and Yang, X.D. (2005b), "Stability in parametric resonance of axially moving viscoelastic beams with time-dependent speed", J. Sound. Vib., 284, 879-891. https://doi.org/10.1016/j.jsv.2004.07.024
- Chen, L.Q., Tang, Y.Q. and Lim, C.W. (2010), "Dynamic stability in parametric resonance of axially accelerating viscoelastic Timoshenko beams", J. Sound. Vib., 329, 547-565 https://doi.org/10.1016/j.jsv.2009.09.031
- Cohen, Y.B. (2001), Electro Active Polymer (EPA) Actuators as Artificial Muscles, Reality, Potential, and Challenges, SPIE Press.
- Darabi, M.A., Kazemirad, S. and Ghayesh, M.H. (2011), "Free vibrations of beam-mass-spring systems: Analytical analysis with numerical confirmation", Acta Mecha. Sinica. (in press)
- Dowell, E.H. (1980), "Component mode analysis of nonlinear and nonconservative systems", ASME J. Appl. Mech., 47, 172-176. https://doi.org/10.1115/1.3153598
- Eisley, J.G. (1964), "Nonlinear vibration of beams and rectangular plates", ZAMP, 15, 167-175. https://doi.org/10.1007/BF01602658
- Ghayesh, M.H. (2008), "Nonlinear transversal vibration and stability of an axially moving viscoelastic string supported by a partial viscoelastic guide", J. Sound. Vib., 314, 757-774. https://doi.org/10.1016/j.jsv.2008.01.030
- Ghayesh, M.H. (2009), "Stability characteristics of an axially accelerating string supported by an elastic foundation", Mech. Machine Theory, 44, 1964-1979. https://doi.org/10.1016/j.mechmachtheory.2009.05.004
- Ghayesh, M.H. (2010), "Parametric vibrations and stability of an axially accelerating string guided by a nonlinear elastic foundation", Int. J. Nonlin. Mech., 45, 382-394. https://doi.org/10.1016/j.ijnonlinmec.2009.12.011
- Ghayesh, M.H. and Balar, S. (2008), "Non-linear parametric vibration and stability of axially moving viscoelastic Rayleigh beams", Int. J. Solids. Struct., 45, 6451-6467. https://doi.org/10.1016/j.ijsolstr.2008.08.002
- Ghayesh, M.H. and Balar, S. (2010), "Non-linear parametric vibration and stability analysis for two dynamic models of axially moving Timoshenko beams", Appl. Math. Model., 34, 2850-2859. https://doi.org/10.1016/j.apm.2009.12.019
- Ghayesh, M.H., Yourdkhani, M., Balar, S. and Reid, T. (2010), "Vibrations and stability of axially traveling laminated beams", Appl. Math. Comput., 217, 545-556. https://doi.org/10.1016/j.amc.2010.05.088
- Ghayesh, M.H. and Moradian, N. (2011), "Nonlinear dynamic response of axially moving, stretched viscoelastic strings", Arch. Appl. Mech., 81(6), 781-799. https://doi.org/10.1007/s00419-010-0446-3
- Ghayesh, M.H. (2011), "On the natural frequencies, complex mode functions, and critical speeds of axially traveling laminated beams: Parametric study", Acta Mecha. Solida Sinica. (in press)
- Ghayesh, M.H. and Paidoussis, M.P. (2010a), "Dynamics of a fluid-conveying cantilevered pipe with intermediate spring support", ASME Conference Proceedings, 2010(54518), 893-902.
- Ghayesh, M.H. and Paidoussis, M.P. (2010b), "Three-dimensional dynamics of a cantilevered pipe conveying fluid, additionally supported by an intermediate spring array", Int. J. Nonlin. Mech., 45(5), 507-524. https://doi.org/10.1016/j.ijnonlinmec.2010.02.001
- Ghayesh, M.H., Paidoussis, M.P. and Modarres-Sadeghi, Y. (2011a), "Three-dimensional dynamics of a fluidconveying cantilevered pipe fitted with an additional spring-support and an end-mass", J. Sound. Vib., 330(12), 2869-2899. https://doi.org/10.1016/j.jsv.2010.12.023
- Ghayesh, M.H., Kazemirad, S., Darabi, M.A. and Woo, P. (2011b), "Thermo-mechanical nonlinear vibration analysis of a spring-mass-beam system", Arch. Appl. Mech. (in press)
- Ghayesh, M.H., Alijani, F. and Darabi, M.A. (2011c), "An analytical solution for nonlinear dynamics of a viscoelastic beam-heavy mass system", J. Mech. Sci. Tech., 25(8), 1915-1923 https://doi.org/10.1007/s12206-011-0519-4
- Ghayesh, M.H., Kazemirad, S. and Darabi, M.A. (2011d), "A general solution procedure for vibrations of systems with cubic nonlinearities and nonlinear/time-dependent internal boundary conditions", J. Sound. Vib., 330(22), 5382-5400. https://doi.org/10.1016/j.jsv.2011.06.001
- Hu, K. and Kirmser, P.G. (1971), "On the nonlinear vibrations of free-free beams", ASME J. Appl. Mech., 38, 461-466. https://doi.org/10.1115/1.3408798
- Karlik, B., Ozkaya, E., Aydin, S. and Pakdemirli, M. (1998), "Vibrations of a beam-mass systems using artificial neural networks", Comput. Struct., 69, 339-347. https://doi.org/10.1016/S0045-7949(98)00126-6
- Marynowski, K. and Kapitaniak, T. (2002), "Kelvin-voigt versus burgers internal damping in modeling of axially moving viscoelastic web", Int. J. Nonlin. Mech., 37, 1147-1161. https://doi.org/10.1016/S0020-7462(01)00142-1
- Marynowski, K. (2004), "Non-linear vibrations of an axially moving viscoelastic web with time-dependent tension", Chaos Soliton. Fract., 21, 2004, 481-490. https://doi.org/10.1016/j.chaos.2003.12.020
- Marynowski, K. (2006), "Two-dimensional rheological element in modelling of axially moving viscoelastic web", Eur. J. Mech. A-Soild., 25, 729-744. https://doi.org/10.1016/j.euromechsol.2005.10.005
- Marynowski, K. and Kapitaniak, T. (2007), "Zener internal damping in modeling of axially moving viscoelastic beam with time-dependent tension", Int. J. Nonlin. Mech., 42, 118-131. https://doi.org/10.1016/j.ijnonlinmec.2006.09.006
- Marynowski, K. (2010), "Free vibration analysis of the axially moving Levy-type viscoelastic plate", Eur. J. Mech. A-Soild., 29, 879-886. https://doi.org/10.1016/j.euromechsol.2010.03.010
- Mockensturm, E.M. and Guo, J. (2005), "Nonlinear vibration of parametrically excited, viscoelastic, axially moving strings", J. Appl. Mech., 72, 374-380. https://doi.org/10.1115/1.1827248
- Nayfeh, A.H. (1993), Problems in Perturbation, Wiley, New York, USA.
- Nayfeh, A.H. and Mook, D.T. (1979), Nonlinear Oscillations, Wiley, New York, USA.
- Ozkaya, E., Pakdemirli, M. and Oz, H.R. (1997), "Non-linear vibrations of a beam-mass system under different boundary conditions", J. Sound. Vib., 199, 679-696. https://doi.org/10.1006/jsvi.1996.0663
- Pakdemirli, M. and Boyaci, H. (2003), "Non-linear vibrations of a simple-simple beam with a nonideal support in between", J. Sound. Vib., 268, 331-341. https://doi.org/10.1016/S0022-460X(03)00363-8
- Pakdemirli, M. and Nayfeh, A.H. (1994), "Nonlinear Vibrations of a Beam-Spring-mass System", ASME J. Vib. Acoust., 116, 433-439. https://doi.org/10.1115/1.2930446
- Srinivasan, A. V. (1965), "Large amplitude-free oscillations of beams and plates", AIAA J., 3, 1951-1953. https://doi.org/10.2514/3.3290
- Szemplinska-Stupnicka, W. (1990), The behaviour of nonlinear vibration systems, II., Kluwer, Netherlands.
- Thomsen, J.J. (2003), Vibrations and Stability, Advanced Theory, Analysis, and Tools, Springer-Verlag, Berlin, Heidelberg.
- Tseng, W.Y. and Dugundji, J. (1971), "Nonlinear vibrations of a buckled beam under harmonic excitation", ASME J. Appl. Mech., 38, 467-472. https://doi.org/10.1115/1.3408799
- Wrenn, B.G. and Mayers, J. (1970), "Nonlinear beam vibration with variable axial boundary restraint", AIAA J., 8, 1718-1720. https://doi.org/10.2514/3.5979
- Zhang, N.H. and Chen, L.Q. (2005), "Nonlinear dynamical analysis of axially moving viscoelastic string", Chaos Soliton. Fract., 24(4),1065-1074. https://doi.org/10.1016/j.chaos.2004.09.113
- Zhang, N.H. (2008), "Dynamic analysis of an axially moving viscoelastic string by the Galerkin method using translating string eigenfunctions", Chaos Soliton. Fract., 35, 291-302. https://doi.org/10.1016/j.chaos.2006.05.021
피인용 문헌
- Nonlinear vibrations and stability of an axially moving beam with an intermediate spring support: two-dimensional analysis vol.70, pp.1, 2012, https://doi.org/10.1007/s11071-012-0458-3
- Nonlinear dynamics of axially moving viscoelastic beams over the buckled state vol.112-113, 2012, https://doi.org/10.1016/j.compstruc.2012.09.005
- Analysis of a quintic system with fractional damping in the presence of vibrational resonance vol.321, 2018, https://doi.org/10.1016/j.amc.2017.11.028
- Steady-state transverse response of an axially moving beam with time-dependent axial speed vol.49, 2013, https://doi.org/10.1016/j.ijnonlinmec.2012.08.003
- Subcritical parametric response of an axially accelerating beam vol.60, 2012, https://doi.org/10.1016/j.tws.2012.06.012
- Internal resonance and nonlinear response of an axially moving beam: two numerical techniques vol.1, pp.3, 2012, https://doi.org/10.12989/csm.2012.1.3.235
- A novel two-dimensional approach to modelling functionally graded beams resting on a soil medium vol.51, pp.5, 2014, https://doi.org/10.12989/sem.2014.51.5.727
- Nonlinear dynamic response of a simply-supported Kelvin-Voigt viscoelastic beam, additionally supported by a nonlinear spring vol.13, pp.3, 2011, https://doi.org/10.1016/j.nonrwa.2011.10.009
- Parametric resonance of fractional multiple-degree-of-freedom damped beam systems vol.232, pp.12, 2011, https://doi.org/10.1007/s00707-021-03087-1