References
- Alibeiglooa, A., Shakerib, M. and Kari, M.R. (2008), "Free vibration analysis of anti-symmetric laminated rectangular plates with distributed patch mass using third-order shear deformation theory", J. Oceon. Eng., 35, 183-190. https://doi.org/10.1016/j.oceaneng.2007.09.002
- Cho, K.N., Bert, C.W. and Striz, A.G. (1991), "Free vibrations of laminated rectangular plates analyzed by higher-order individual-layer theory", J. Sound Vib., 145, 429-442. https://doi.org/10.1016/0022-460X(91)90112-W
- Kant, T. (1982), "Numerical analysis of thick plates", Comm. Meth. Appl. Mech. Eng., 31, 1-18. https://doi.org/10.1016/0045-7825(82)90043-3
- Kant, T. and Swaminatha, K. (2001), "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory", Comput. Struct., 53, 73-85. https://doi.org/10.1016/S0263-8223(00)00180-X
- Kim, J.S. (2007), "Free vibration of laminated and sandwich plates using enhanced plate theories", J. Sound Vib., 308, 268-286. https://doi.org/10.1016/j.jsv.2007.07.040
- Lee, H.K., Ha, S.K. and Afzal, M. (2008), "Numerical modeling of frp strengthened RC beam-column joints", Struct. Eng. Mech., 30, 247-261 https://doi.org/10.1016/j.engstruct.2007.03.021
- Levinson, M. (1980), "An accurate simple theory of the statics and dynamics of elastic plates", Mech. Res. Comm., 7, 343-350. https://doi.org/10.1016/0093-6413(80)90049-X
- Liew, K.M., Xiang, Y. and Kitipornchai, S. (1995), "Research on thick plate vibration: a literature survey", J. Sound Vib., 180, 163-176. https://doi.org/10.1006/jsvi.1995.0072
- Lo, K.H., Christensen, R.M. and Wu, F.M. (1977), "A higher-order theory of plate deformation, part 2: laminated plates", J. Appl. Mech., 44, 669-676. https://doi.org/10.1115/1.3424155
- Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31-38.
- Nosier, A., Kapania, R.K. and Reddy, J.N. (1993), "Free vibration analysis of laminated plates using a layer-wise theory", AIAA J., 31, 2335-2346. https://doi.org/10.2514/3.11933
- Pandya, B.N. and Kant, T. (1988), "Finite element stress analysis of laminated composite plates using higher order displacement model", Comput. Sci. Tech., 32, 137-155. https://doi.org/10.1016/0266-3538(88)90003-6
- Rastgaar, Agaah M., Mahinfalah, M. and Nakhaie Jazar, G. (2006), "Natural frequencies of laminated composite plates using third-order shear deformation theory", Concrete Struct., 72, 273-279.
- Reddy, J.N. (1979), "Free vibration of antisymmetric angle ply laminated plates including transverse shear deformation by the finite element method", J. Sound Vib., 4, 565-576.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (1987), "A generalization of two-dimensional theories of laminated plates", Comm. Numer. Meth. Eng., 3, 173-180. https://doi.org/10.1002/cnm.1630030303
- Reissner, E. (1945), "On bending of elastic plates", J. Appl. Mech., Trans. ASME, A-69.
- Reissner, E. (1950), "On a variational theorem in elasticity", J. Math. Phy., 29, 90-95. https://doi.org/10.1002/sapm195029190
- Seyed, S.M. and Hamid, R.R. (2009), "Numerical modelling of frp strengthened RC beam-column joints", Struct. Eng. Mech., 32, 649-665. https://doi.org/10.12989/sem.2009.32.5.649
- Singh, B.N., Yadav, D. and Iyengar, N.G.R. (2001), "Natural frequencies of composite plates with random material properties using higher-order shear deformation theory", Int. J. Mech. Sci., 43, 2193-2214. https://doi.org/10.1016/S0020-7403(01)00046-7
- Sun, C.T. and Whitney, J.M. (1973), "Theories for the dynamic response of laminated plates", AIAA J., 11, 178-183. https://doi.org/10.2514/3.50448
- Timarci, T. and Soldatos, K.P. (1995), "Comparative dynamic studies for symmetric cross-ply circular cylindrical shells on the basis of a unified shear deformable shell theory", J. Sound Vib., 187, 609-624. https://doi.org/10.1006/jsvi.1995.0548
- Ueng, C.E.S. (1966), "Natural frequencies of vibration of an all clamped rectangular sandwich panel", J. Appl. Mech., 33, 683-684. https://doi.org/10.1115/1.3625143
- Whitney, J.M. and Pagano, N.J. (1970), "Shear deformation in heterogeneous anisotropic plates", J. Appl. Mech., 37, 1031-1036. https://doi.org/10.1115/1.3408654
- Wong, W.O. (2002), "The effects of distributed mass loading on plate vibration behavior", J. Sound Vib., 252(3), 577-583. https://doi.org/10.1006/jsvi.2001.3947
- Xin, Z. (2008), "Mechanics feasibility of using Cfrp cables in super long-span cable-stayed bridges", Struct. Eng. Mech., 29, 567-579. https://doi.org/10.12989/sem.2008.29.5.567
- Yang, P.C., Norris, C.H. and Stavsky, Y. (1966), "Elastic wave propagation in heterogeneous plates", Int. J. Sol. Struct., 2, 665-684. https://doi.org/10.1016/0020-7683(66)90045-X
- Yu, Y.Y. (1966), "Influence of transverse shear and edges condition on nonlinear vibration and dynamic buckling of homogeneous and sandwich plates", J. Appl. Mech., 33, 934-936. https://doi.org/10.1115/1.3625205
Cited by
- Analytical solution for bending analysis of soft-core composite sandwich plates using improved high-order theory vol.44, pp.1, 2012, https://doi.org/10.12989/sem.2012.44.1.015
- Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields vol.64, pp.3, 2011, https://doi.org/10.12989/sem.2017.64.3.361