DOI QR코드

DOI QR Code

Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading

  • Kocaturk, Turgut (Department of Civil Engineering, Yildiz Technical University, Davutpasa Campus) ;
  • Akbas, Seref Doguscan (Department of Civil Engineering, Yildiz Technical University, Davutpasa Campus)
  • 투고 : 2010.12.01
  • 심사 : 2011.08.17
  • 발행 : 2011.11.10

초록

This paper focuses on post-buckling analysis of Timoshenko beams with various boundary conditions subjected to a non-uniform thermal loading by using the total Lagrangian Timoshenko beam element approximation. Six types of support conditions for the beams are considered. The considered highly non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. As far as the authors know, there is no study on the post-buckling analysis of Timoshenko beams under uniform and non-uniform thermal loading considering full geometric non-linearity investigated by using finite element method. The convergence studies are made and the obtained results are compared with the published results. In the study, the relationships between deflections, end rotational angles, end constraint forces, thermal buckling configuration, stress distributions through the thickness of the beams and temperature rising are illustrated in detail in post-buckling case.

키워드

참고문헌

  1. Akbas. S.D. and Kocaturk, T. (2011), "Post-buckling analysis of a simply supported beam under uniform thermal loading", Sci. Res. Essay., 6(4), 1135-1142.
  2. Aristizabal-Ochoa, J.D. (2007), "Large deflection and post-buckling behavior of Timoshenko beam-columns with semi-rigid connections including shear and axial effects", J. Eng. Struct., 29(6), 991-1003. https://doi.org/10.1016/j.engstruct.2006.07.012
  3. Aristizabal-Ochoa, J.D. (2008), "Slope-deflection equations for stability and second- order analysis of Timoshenko beam-column structures with semi-rigid connections", J. Eng. Struct., 30(9), 2517-2527. https://doi.org/10.1016/j.engstruct.2008.02.007
  4. Aristizabal-Ochoa, J.D. (2008), "Closure: slope-deflection equations for stability and second-order analysis of Timoshenko beam-column structures with semi-rigid connections", J. Eng. Struct., 30(11), 3394-3395. https://doi.org/10.1016/j.engstruct.2008.09.004
  5. Chen, B., Gu, Y., Zhao, G., Lin, W., Chang, T.Y.P. and Kuang, J.S. (2003), "Design optimization for structural thermal buckling", J. Therm. Stresses, 26(5), 479-494. https://doi.org/10.1080/713855939
  6. Coffin, D.W. and Bloom, F. (1999), "Elastica solution for the hygrothermal buckling of a beam", Int. J. Nonlin. Mech., 34(5), 935-947. https://doi.org/10.1016/S0020-7462(98)00067-5
  7. Evandro, P. Jr. and Joao, B.M.S. (2008), "Desing sensitivity analysis of nonlinear structures subjected to thermal loads", Comput. Struct., 86(11-12), 1369-1384. https://doi.org/10.1016/j.compstruc.2007.08.002
  8. Felippa, C.A. (2010), "Notes on nonlinear finite element methods", http://www.colorado.edu/engineering/cas/courses.d/NFEM.d/NFEM.Ch09.d/NFEM.Ch09.pdf
  9. Gauss, R.C. and Antman, S.S. (1984), "Large thermal buckling of non-uniform beam and plates", Int. J. Solids Struct., 20(11-12), 979-1000. https://doi.org/10.1016/0020-7683(84)90085-4
  10. Gupta, R.K., Gunda, J. B., Janardhan, G.R. and Rao, G.V. (2009), "Comparative study of thermal post-buckling analysis of uniform slender & shear flexible columns using rigorous finite element and intutive formulations", Int. J. Mech. Sci., 51(3), 204-212. https://doi.org/10.1016/j.ijmecsci.2009.01.002
  11. Gupta, R.K., Gunda, J.B., Janardhan, G.R. and Rao, G.V. (2010), "Post-buckling analysis of composite beams: Simple and accurate closed-form expressions", Compos. Struct., 92(3), 1947-1956. https://doi.org/10.1016/j.compstruct.2009.12.010
  12. Gupta, R.K., Gunda, J.B., Janardhan, G.R. and Rao, G.V. (2010), "Thermal Post-buckling analysis of slender columns using the concept of coupled displacement field", Int. J. Mech. Sci., 52(4), 590-594. https://doi.org/10.1016/j.ijmecsci.2009.12.005
  13. Jekot, T. (1996), "Non-linear problems of thermal buckling of a beam", J. Therm. Stresses, 19, 359-369. https://doi.org/10.1080/01495739608946180
  14. Li, S.R. (2000), "Thermal post-buckling of asymmetrically supported elastic rods", Eng. Mach., 17(5), 115-119.
  15. Li, S. and Cheng, C. (2000), "Analysis of thermal post-buckling of heated elastic rods", Appl. Math. Mech. (English ed.), 21(2), 133-140. https://doi.org/10.1007/BF02458513
  16. Li, S., Zhou, Y.H. and Zheng, X. (2002), "Thermal post- buckling of a heated elastic rod with pinned-fixed ends", J. Therm. Stresses, 25(1), 45-56. https://doi.org/10.1080/014957302753305862
  17. Li, S. and Zhou, Y. (2001), "Thermal post-buckling of rods with variable cross sections", Proceedings of the Fourth International Congress on Thermal Stresses, Osaka, Japan.
  18. Li, S.R., Cheng, C.J. and Zhou, Y.H. (2003), "Thermal post-buckling of an elastic beams subjected to a transversely non-uniform temperature rising", Appl. Math. Mech. (English ed.), 24(5), 514-520. https://doi.org/10.1007/BF02435863
  19. Li, S. and Zhou, Y. (2003), "Geometrically nonlinear analysis of Timoshenko beams under thermomechanical loadings", J. Therm. Stresses, 26(9), 861-872. https://doi.org/10.1080/01495730306295
  20. Li, S. and Song, X. (2006), "Large thermal deflections of Timoshenko beams under transversely non-uniform temperature rise", Mech. Res. Comm., 33(1), 84-92. https://doi.org/10.1016/j.mechrescom.2005.06.004
  21. Rao, G.V. and Raju, K.K. (1984), "Thermal postbuckling of columns", AIAA J., 22(6), 850-851. https://doi.org/10.2514/3.8695
  22. Reddy, J.N. (2004), An Introduction to Non-linear Finite Element Analysis, Oxford University Press Inc., New York.
  23. Song, X. and Li, S.R. (2007), "Thermal buckling and post-buckling of pinned-fixed Euler-Bernoulli beams on an elastic foundation", Mech. Res. Comm., 34(2), 164-171. https://doi.org/10.1016/j.mechrescom.2006.06.006
  24. Vaz, M.A. and Solano, R.F. (2003), "Postbuckling analysis of slender elastic rods subjected to uniform thermal loads", J. Therm. Stresses, 26(9), 847-860. https://doi.org/10.1080/01495730306293
  25. Vaz, M.A. and Solano, R.F. (2004), "Thermal post-buckling of slender elastic rods with hinged ends constrained by a linear spring", J. Therm. Stresses, 27(4), 367-380. https://doi.org/10.1080/01495730490427591
  26. Vaz, M.A., Nascimento, M.S. and Solano, R.F. (2007), "Initial post-buckling of elastic rods subjected to thermal loads and resting on an elastic foundation", J. Therm. Stresses, 30(4), 381-393. https://doi.org/10.1080/01495730601146352
  27. Vaz, M.A., Cyrino, J.C.R. and Neves, A.C. (2010), "Initial thermo-mechanicalpost-buckling of beams with temperature-dependent physical properties", Int. J. Nonlin. Mech., 45(3), 256-262. https://doi.org/10.1016/j.ijnonlinmec.2009.11.006
  28. Zienkiewichz, O.C. and Taylor, R.L. (2000), The Finite Element Method, Fifth Edition, Volume 2: Solid Mechanics, Butterworth-Heinemann, Oxford.

피인용 문헌

  1. Analytical approximate solutions for large post-buckling response of a hygrothermal beam vol.43, pp.2, 2012, https://doi.org/10.12989/sem.2012.43.2.211
  2. A spectral element model for thermal effect on vibration and buckling of laminated beams based on trigonometric shear deformation theory vol.133, 2017, https://doi.org/10.1016/j.ijmecsci.2017.07.059
  3. Post-Buckling Analysis of Functionally Graded Three-Dimensional Beams Under the Influence of Temperature vol.36, pp.12, 2013, https://doi.org/10.1080/01495739.2013.788397
  4. Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading vol.44, pp.1, 2012, https://doi.org/10.12989/sem.2012.44.1.109
  5. Large post-buckling behavior of Timoshenko beams under axial compression loads vol.51, pp.6, 2014, https://doi.org/10.12989/sem.2014.51.6.955
  6. Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading vol.41, pp.6, 2012, https://doi.org/10.12989/sem.2012.41.6.775
  7. Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties vol.15, pp.5, 2013, https://doi.org/10.12989/scs.2013.15.5.481
  8. Post-Buckling Analysis of Edge Cracked Columns Under Axial Compression Loads vol.08, pp.08, 2016, https://doi.org/10.1142/S1758825116500861
  9. Post-buckling responses of functionally graded beams with porosities vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.579
  10. Nonlinear static analysis of functionally graded porous beams under thermal effect vol.6, pp.4, 2017, https://doi.org/10.12989/csm.2017.6.4.399
  11. Post-buckling responses of a laminated composite beam vol.26, pp.6, 2011, https://doi.org/10.12989/scs.2018.26.6.733
  12. Geometrically nonlinear analysis of a laminated composite beam vol.66, pp.1, 2011, https://doi.org/10.12989/sem.2018.66.1.027
  13. Large deflection analysis of a fiber reinforced composite beam vol.27, pp.5, 2011, https://doi.org/10.12989/scs.2018.27.5.567
  14. Geometrically nonlinear analysis of functionally graded porous beams vol.27, pp.1, 2011, https://doi.org/10.12989/was.2018.27.1.059
  15. Thermal post-buckling analysis of a laminated composite beam vol.67, pp.4, 2018, https://doi.org/10.12989/sem.2018.67.4.337
  16. Hygro-thermal post-buckling analysis of a functionally graded beam vol.8, pp.5, 2019, https://doi.org/10.12989/csm.2019.8.5.459
  17. Dynamic responses of laminated beams under a moving load in thermal environment vol.35, pp.6, 2011, https://doi.org/10.12989/scs.2020.35.6.729