DOI QR코드

DOI QR Code

Correction of node mapping distortions using universal serendipity elements in dynamical problems

  • Kucukarslan, Semih (Department of Civil Engineering, Istanbul Technical University) ;
  • Demir, Ali (Department of Civil Engineering, Celal Bayar University)
  • 투고 : 2010.12.10
  • 심사 : 2011.08.17
  • 발행 : 2011.10.25

초록

In this paper, the use of universal serendipity elements (USE) to eliminate node mapping distortions for dynamic problem is presented. Rectangular shaped elements for USE are being introduced by using a flexible master element with an adjustable edge node location. The shape functions of the universal serendipity formulation are used to derive the mass and damping matrices for the dynamic analyses. These matrices eliminate the node mapping distortion errors that occurs incase of the standard shape function formulations. The verification of new formulation will be tested and the errors encountered in the standard formulation will be studied for a dynamically loaded deep cantilever.

키워드

참고문헌

  1. Bathe, K.J. (1995), Finite Element Procedures, Prentice Hall, NJ.
  2. Celia, M.A. and Cray, W.G. (1984), "An improved isoparametric transformation for finite element analysis", Int. J. Numer. Meth. Eng., 20, 1443-1459. https://doi.org/10.1002/nme.1620200808
  3. Chamberland, E., Fortin, A. and Fortin, M. (2010), "Comparison of the performance of some finite element discretizations for large deformation elasticity problems", Comput. Struct., 88, 664-673. https://doi.org/10.1016/j.compstruc.2010.02.007
  4. Citipitiglu, E. (1983), "Universal serendipity elements", Int. J. Numer. Meth. Eng., 19, 803-810. https://doi.org/10.1002/nme.1620190603
  5. Dhananjaya, H.R., Pandey, P.C. and Nagabhushanam, J. (2009), "New eight node serendipity quadrilateral plate bending element for thin and moderately thick plates using Integrated Force Method", Struct. Eng. Mech., 33, 485-502. https://doi.org/10.12989/sem.2009.33.4.485
  6. Dhananjaya, H.R., Nagabhushanam, J., Pandey, P.C. and Jumaat, M.Z. (2010), "New twelve node serendipity quadrilateral plate bending element based on Mindlin-Reissner theory using Integrated Force Method", Struct. Eng. Mech., 36, 625-642. https://doi.org/10.12989/sem.2010.36.5.625
  7. El-Mezaini, N. and Citipitioglu, E. (1991), "Finite element analysis of prestressed and reinforced structures", J. Struct. Eng., 117, 2851-2864. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:10(2851)
  8. Heng, B.C.P. and Mackie, R.I. (2009), "Using design patterns in object-oriented finite element programming", Comput. Struct., 87, 952-961. https://doi.org/10.1016/j.compstruc.2008.04.016
  9. Ho, S.P. and Yeh, Y.L. (2006), "The use of 2D enriched elements with bubble functions for finite element analysis", Comput. Struct., 84, 2081-2091. https://doi.org/10.1016/j.compstruc.2006.04.008
  10. Konstantinos, E., Kakosimos, M. and Assael, J. (2009), "An efficient 3D mesh generator based on geometry decomposition", Comput. Struct., 87, 27-38. https://doi.org/10.1016/j.compstruc.2008.09.002
  11. Kucukarslan, S. (1995), "Universal serendipity elements with unequally spaced edge nodes", MSc Thesis, METU, Ankara, Turkey.
  12. Kucukarslan, S. and Demir, A. (2008), "Node mapping correction for universal serendipity element under dynamic loads", Proceedings of the 4th International Conference on Advances in Structural Engineering and Mechanics, Jeju, Korea.
  13. Kikuchi, F., Okabe, M. and Fujio, H. (1999), "Modification of the 8-node serendipity element", Comput. Meth. Appl. Mech. Eng., 179, 91-109. https://doi.org/10.1016/S0045-7825(99)00031-6
  14. Lim, J.H., Sohn, D., Lee D.H. and Im, S. (2010), "Variable-node finite elements with smoothed integration techniques and their applications for multiscale mechanics problem", Comput. Struct., 88, 413-425. https://doi.org/10.1016/j.compstruc.2009.12.004
  15. Nicolas, V.T. and Citipitioglu, E. (1977), "A general isoparametric finite element program SDRC-SUPERB", Comput. Struct., 7, 303-313. https://doi.org/10.1016/0045-7949(77)90050-5
  16. Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, McGraw Hill, NY.
  17. Utku, M., Citipitioglu, E. and Ozkan, G. (1991), "Isoparametric elements with unequally spaced edge nodes", Comput. Struct., 41, 455-460. https://doi.org/10.1016/0045-7949(91)90138-C
  18. Utku, M. (2000), "An improved transformation for universal serendipity elements", Comput. Struct., 73, 199-206.