References
- ANSYS, Software and manual (Version 5.6).
- Cecchi, M.M. and Lami, C. (1977, online 2005), "Automatic generation of stiffness matrices for finite element analysis", Int. J. Numer. Meth. Eng., 11, 396-400.
- Chang, T.Y., Tan, H.Q., Zheng, D. and Yuan, M.W. (1990), "Application of symbolic method to hybrid and mixed finite elements and computer implementation", Comput. Struct., 35, 293-299. https://doi.org/10.1016/0045-7949(90)90055-7
- Dhananjaya, H.R., Nagabhushanam, J. and Pandey, P.C. (2007), "Bilinear plate bending element for thin and moderately thick plates using Integrated Force Method", Struct. Eng. Mech., 26(1), 43-68. https://doi.org/10.12989/sem.2007.26.1.043
- Dhananjaya, H.R., Nagabhushanam, J. and Pandey, P.C. (2008), "Automatic generation of equilibrium and flexibility matrices for plate bending elements using integrated force method", Struct. Eng. Mech., 30(4), 387-402. https://doi.org/10.12989/sem.2008.30.4.387
- Eriksson, A. and Pacoste, C. (1999), "Symbolic software tools in the development of finite elements", Comput. Struct., 72, 579-593. https://doi.org/10.1016/S0045-7949(98)00333-2
- Griffiths, D.V. (1994), "Stiffness matrix of the four node quadrilateral element in closed form", Int. J. Numer. Meth. Eng., 37, 1028-1038.
- Gunderson, R.H. and Ayhan Cetiner (1971), "Element stiffness matrix generator", J. Struct. Div.-ASCE, 363-375.
- Hoa, S.V. and Sankar, S. (1980), "A program for automatic generation of stiffness and mass matrices in finite element analysis", Comput. Struct., 11, 147-161. https://doi.org/10.1016/0045-7949(80)90154-6
- Jane Liu, Riggs, H.R. and Alexander Tessler. (2000), "A four node shear-deformable shell element developed via explicit Kirchhoff constraints". Int. J. Numer. Meth. Eng., 49, 1065-1086. https://doi.org/10.1002/1097-0207(20001120)49:8<1065::AID-NME992>3.0.CO;2-5
- Lee, C.K. and Hobbs, R.E. (1998), "Closed form stiffness matrix solutions for some commonly used hybrid finite elements", Comput. Struct., 67, 463-482. https://doi.org/10.1016/S0045-7949(98)00055-8
- Love, A.E.H. (1944), A Treatise on the Mathematical Theory of Elasticity, Dover, New York.
- Luft, R.W., Roesset, J.M. and Connor, J.J. (1971), "Automatic generation of finite element matrices", J. Struct. Div.-ASCE, 349-362.
- Nagabhushanam, J. and Patnaik, S.N. (1990), "General purpose program to generate compatibility matrix for the Integrated Force Method", AIAA J., 28, 1838-1842. https://doi.org/10.2514/3.10488
- Nagabhushanam, J. and Srinivas, C.J. (1991), "Automatic generation of sparse and banded compatibility matrix for the Integrated Force Method", Computer Mechanics '91, International Conference on Computing in Engineering Science, Patras, Greece.
- Nagabhushanam, J., Srinivas, C.J. and Gaonkar, G.H. (1992), "Symbolic generation of elemental matrices for finite element analysis", Comput. Struct., 42(3), 375-380. https://doi.org/10.1016/0045-7949(92)90033-V
- NISA, Software and manual (Version 9.3).
- Noor, A.K. and Andersen, C.M. (1979), "Computerized symbolic manipulation in structural mechanics-progress and potential", Comput. Struct., 10, 95-118. https://doi.org/10.1016/0045-7949(79)90077-4
- Oztorun, N.K. (2006), "A rectangular finite element formulation", Finite Elem. Analy. Des., 42, 1031-1052. https://doi.org/10.1016/j.finel.2006.03.004
- Patnaik, S.N. (1973), "An integrated force method for discrete analysis", Int. J. Numer. Meth. Eng., 6, 237-251. https://doi.org/10.1002/nme.1620060209
- Patnaik, S.N. (1986), "The variational energy formulation for the Integrated Force Method", AIAA J., 24, 129-137. https://doi.org/10.2514/3.9232
- Patnaik, S.N., Berke, L. and Gallagher, R.H. (1991), "Integrated force method verses displacement method for finite element analysis", Comput. Struct., 38(4), 377-407. https://doi.org/10.1016/0045-7949(91)90037-M
- Patnaik, S.N., Coroneos, R.M. and Hopkins, D.A. (2000), "Compatibility conditions of structural mechanics", Int. J. Numer. Meth. Eng., 47, 685-704. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<685::AID-NME788>3.0.CO;2-Y
- Pavlovic, M.N. (2003), "Review article on symbolic computation in structural engineering", Comput. Struct., 81, 2121-2136. https://doi.org/10.1016/S0045-7949(03)00286-4
- Reissner, E. (1945), "The effect of transverse shear deformation on bending of plates", J. Appl. Mech., 12, A69-A77.
- Spilker, R.L. (1982), "Invariant 8-node hybrid-stress elements for thin and moderately thick plates", Int. J. Numer. Meth. Eng., 18, 1153-1178. https://doi.org/10.1002/nme.1620180805
- Thompson, L.L. (2003), "On optimal stabilized MITC4 plate bending elements for accurate frequency response analysis", Comput. Struct., 81(8-11), 995-1008. https://doi.org/10.1016/S0045-7949(02)00405-4
- Timoshenko, S.P. and Krieger, S.W. (1959), Theory of Plates and Shells, Second Edition, McGraw Hill International Edition.
- Yew, C.K., Boyle, J.T. and MacKenzle, D. (1995), "Closed form integration of element stiffness matrices using a computer algebra system", Comput. Struct., 56(4), 529-539. https://doi.org/10.1016/0045-7949(94)00549-I
- Zhou, S.J. (2002), "Load induced stiffness matrix of plates", Can. J. Civil Eng., 29, 181-184. https://doi.org/10.1139/l01-064
- Zhov, C.E. and Vecchio, J. (2006), "Closed-form stiffness matrix for the four-node quadrilateral element with a fully populated material stiffness", J. Eng. Mech., 132(12), 1392-1395. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:12(1392)
Cited by
- Application of the dual integrated force method to the analysis of the off-axis three-point flexure test of unidirectional composites vol.50, pp.3, 2016, https://doi.org/10.1177/0021998315576377
- Identification of material properties of composite materials using nondestructive vibrational evaluation approaches: A review vol.24, pp.12, 2017, https://doi.org/10.1080/15376494.2016.1196798
- Comparison between the stiffness method and the hybrid method applied to a circular ring vol.40, pp.2, 2018, https://doi.org/10.1007/s40430-018-1013-z