참고문헌
- Anderson, T.L. (1991), Fracture Mechanics: Fundamentals and Applications, 1st Edition, CRC Press, Boca Raton.
- Atluri, S.N. and Zhu, T.L. (1998), "A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics", Comput. Mech., 22, 117-127. https://doi.org/10.1007/s004660050346
- Babuska, I. and Rheinboldt, W.C. (1978), "A posteriori error estimates for the finite element method", Int. J. Numer. Meth. Eng., 12, 1597-1615. https://doi.org/10.1002/nme.1620121010
- Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element free Garlerkin methods", Int. J. Numer. Meth. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205
- Chen, J.S., Wu, C.T. and Belytschko, T. (2000), "Regularization of material instabilities by meshfree approximations with intrinsic length scales", Int. J. Numer. Meth. Eng., 47, 1303-1322. https://doi.org/10.1002/(SICI)1097-0207(20000310)47:7<1303::AID-NME826>3.0.CO;2-5
- Chen, J.S., Wu, C.T., Yoon, S. and You, Y. (2001), "A stabilized conforming nodal integration for Galerkin mesh-free methods", Int. J. Numer. Meth. Eng., 50, 435-466. https://doi.org/10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
- Chung, H.J. and Belytschko, T. (1998), "An error estimate in the EFG method", Comput. Mech., 21, 91-100. https://doi.org/10.1007/s004660050286
- Choi, C.K. and Chung, H.J. (1995), "An adaptive-control of spatial-temporal discretization error in finite-element analysis of dynamic problems", Struct. Eng. Mech., 3, 391-410. https://doi.org/10.12989/sem.1995.3.4.391
- Dohrmann, C.R., Heinstein, M.W., Jung, J., Key, S.W. and Witkowski, W.R. (2000), "Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes", Int. J. Numer. Meth. Eng., 47, 1549-1568. https://doi.org/10.1002/(SICI)1097-0207(20000330)47:9<1549::AID-NME842>3.0.CO;2-K
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Kee, B.B.T., Liu, G.R. and Zhang, G.Y. (2008), "A residual based error estimator using radial basis functions", Finite Elem. Anal. Des., 44, 631-645. https://doi.org/10.1016/j.finel.2008.02.002
- Lee, C., Im, C.H. and Jung, H.K. (1998), "A posteriori error estimation and adaptive node refinement for fast moving least square reproducing kernel (FMLSRK) method", CMES: Comp. Model. Eng. Sci., 20, 35-41.
- Liu G.R. (2002), Mesh Free Methods: Moving Beyond the Finite Element Method, CRC Press, Boca Raton.
- Liu, G.R. (2008), "A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formula of a wide class of computational methods", Int. J. Comput. Meth., 5, 199-236. https://doi.org/10.1142/S0219876208001510
- Liu, G.R., Dai, K.Y. and Nguyen, T.T. (2007), "A smoothed finite element method for mechanics problems", Comput. Mech., 39, 859-877. https://doi.org/10.1007/s00466-006-0075-4
- Liu, G.R., Nguyen, T.T. and Dai, K.Y. (2007), "Theoretical aspects of the smoothed finite element method (SFEM)", Int. J. Numer. Meth. Eng., 71, 902-930. https://doi.org/10.1002/nme.1968
- Liu, G.R., Nguyen-Thoi, T. and Lam, K.Y. (2008), "An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analysis", J. Sound Vib., 320, 1100-1130.
- Liu, G.R., Nguyen-Thoi, T. and Lam, K.Y. (2009), "A node-based smoothed finite element method for upper bound solution to solid problems (NS-FEM)", Comput. Struct., 87, 14-26. https://doi.org/10.1016/j.compstruc.2008.09.003
- Liu, G.R., Nguyen-Thoi, T., Nguyen-Xuan, H., Dai, K.Y. and Lam, K.Y. (2009), "On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM)", Int. J. Numer. Meth. Eng., 77, 1863-1869. https://doi.org/10.1002/nme.2587
- Liu, G.R. and Quek, S.S. (2003), The Finite Element Method: A Practical Course, Butterworth Heinemann, Oxford.
- Liu, G.R. and Tu, Z.H. (2002), "An adaptive procedure based on background cells for Meshfree methods", Comput. Meth. Appl. Mech. Eng., 191, 1923-1943. https://doi.org/10.1016/S0045-7825(01)00360-7
- Liu, G.R. and Zhang, G.Y. (2005), "A linearly conforming point interpolation method (LC-PIM) for 2D solid mechanics problems", Int. J. Comput. Meth., 2, 645-665. https://doi.org/10.1142/S0219876205000661
- Lucy, L.B. (1977), "Numerical approach to testing the fission hypothesis", Astrono. J., 82, 1013-1024. https://doi.org/10.1086/112164
- Nguyen-Thoi, T., Liu, G.R. and Lam, K.Y. (2009), "A face-based smoothed finite element method (FS-FEM) for 3D linear and nonlinear solid mechanics problems using 4-node tetrahedral elements", Int. J. Numer. Meth. Eng., 78, 324-353. https://doi.org/10.1002/nme.2491
- Ozakca, M. (2003), "Comparison of error estimation methods and adaptivity for plane stress/strain problems", Struct. Eng. Mech., 15, 579-608. https://doi.org/10.12989/sem.2003.15.5.579
- Timoshenko, S.P. and Goodier, J.N. (1977), Theory of Elasticity, McGraw-Hill, New York.
- Yoo, J., Moran, W.B. and Chen, J.S. (2004), "Stabilized conforming nodal integration in the natural-element method", Int. J. Numer. Meth. Eng., 60, 861-890. https://doi.org/10.1002/nme.972
- Zhang, G.Y. and Liu, G.R. (2008), "An efficient adaptive analysis procedure for certified solutions with exact bounds of strain energy for elastic problems", Finite Elem. Anal. Des., 44, 831-841. https://doi.org/10.1016/j.finel.2008.06.010
- Zhang, J., Liu, G.R., Lam, K.Y., Li, H. and Xu, G. (2008), "A gradient smoothing method (GSM) based on strong form governing equation for adaptive analysis of solid mechanics problems", Finite Elem. Anal. Des., 44, 889-909. https://doi.org/10.1016/j.finel.2008.06.006
- Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method, 5th Edition, Butterworth Heinemann, Oxford.
- Zienkiewicz, O.C. and Zhu, J.Z. (1987), "A simple error estimator and adaptive procedure for practical engineering analysis", Int. J. Numer. Meth. Eng., 24, 337-357. https://doi.org/10.1002/nme.1620240206
피인용 문헌
- Investigating the Effect of Several Model Configurations on the Transient Response of Gas-Insulated Substation during Fault Events Using an Electromagnetic Field Theory Approach vol.13, pp.23, 2020, https://doi.org/10.3390/en13236231