References
- Akbas, B. (2006), "A neural network model to assess the hysteretic energy demand in steel moment resisting frames", Struct. Eng. Mech., 23(2), 177-193. https://doi.org/10.12989/sem.2006.23.2.177
- Amadio, C. and Fragiacomo, M. (1997), "A simplified approach to evaluate creep and shrinkage effects in steel concrete composite beams", J. Struct. Eng.-ASCE, 123(9), 1153-1162. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:9(1153)
- Arslan, M.H., Ceylan, M., Kaltakci, M.Y., Ozaby, Y. and Gulay, F.G. (2007), "Prediction of force reduction factor (R) of prefabricated industrial buildings using neural networks", Struct. Eng. Mech., 27(2), 117-134. https://doi.org/10.12989/sem.2007.27.2.117
- Bakhary, N., Hao, H. and Deeks, A.J. (2007), "Damage detection using artificial neural network with consideration of uncertainties", Eng. Struct., 29(11), 2806-2815. https://doi.org/10.1016/j.engstruct.2007.01.013
- Bazant, Z.P. (1972), "Prediction of concrete creep-effects using age adjusted effective modulus method", ACI J., 69(4), 212-217.
- Bradford, M.A., Manh, H.V. and Gilbert, R.I. (2002), "Numerical analysis of continuous composite beams at service loading", Adv. Struct. Eng., 5(1), 1-12. https://doi.org/10.1260/1369433021502498
- CEB-FIP MC 90 (1993), Model Code 1990 for Concrete Structures. Bulletin d' information No. 213/214. Comite' Euro International du Beton-Fe'de'ration International de la Pre'contrainte, Laussane, Switzerland.
- Chandak, R., Upadhyay, A. and Bhargava, P. (2008), "Shear lag prediction in symmetrical laminated composite box beams using artificial network", Struct. Eng. Mech., 29(1), 77-89. https://doi.org/10.12989/sem.2008.29.1.077
- Chang, S., Kim, D., Chang, C. and Cho, S.G. (2009), "Active response control of an offshore structure under wave loads using the modified probabilistic neural network", J. Mater. Sci. Technol., 14(2), 240.
- Chaudhary, S., Pendharkar, U. and Nagpal, A.K. (2007a), "Service load behavior of low rise composite frames considering creep, shrinkage and cracking", Latin Am. J. Solids Struct., 5(4), 237-258.
- Chaudhary, S., Pendharkar, U. and Nagpal, A.K. (2007b), "A hybrid procedure for cracking and time-dependent effects in composite frames at service load", J. Struct. Eng.-ASCE, 133(2), 166-175. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:2(166)
- Chaudhary, S., Pendharkar, U. and Nagpal, A.K. (2007c), "Bending moment prediction for continuous composite beams by neural networks", Adv. Struct. Eng., 10(4), 439-454. https://doi.org/10.1260/136943307783239390
- Cheng, J., Cai, C.S. and Xiao, R.C. (2007), "Application of artificial neural networks to the response prediction of geometrically nonlinear truss structures", Struct. Eng. Mech., 26(3), 251-262. https://doi.org/10.12989/sem.2007.26.3.251
- Cho, H.N., Cho, Y.M., Lee, S.C. and Hur, C.K. (2004), "Damage assessment of cable stayed bridges using probabilistic neural network", Struct. Eng. Mech., 17(3), 483-492. https://doi.org/10.12989/sem.2004.17.3_4.483
- Cruz, P.J.S., Mari, A.R. and Roca, P. (1998), "Non-linear time dependent analysis of segmentally constructed structures", J. Struct. Eng.-ASCE, 124(3), 278-287. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:3(278)
- Fragiacomo, M., Amadio, C. and Macorini, L. (2004), "Finite element model for collapse and long-term analysis of steel-concrete composite beams", J. Struct. Eng.-ASCE, 130(3), 489-497. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(489)
- Ghali, A., Favre, R. and Elbadry, M. (2002), Concrete Structures: Stresses and Deformations, Third Edition, Spon Press, London.
- Gilbert, R.I. and Bradford, M.A. (1995), "Time-dependent behavior of composite beams at service loads", J. Struct. Eng.-ASCE, 121(2), 319-327. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(319)
- Giri, V. and Upadhyay, A. (2006), "ANN based prediction of moment coefficients in slabs subjected to patch load", Struct. Eng. Mech., 24(4), 509-514. https://doi.org/10.12989/sem.2006.24.4.509
- Jeng, C.H. and Mo, Y.L. (2004), "Quick seismic response estimation of prestressed concrete bridges using artificial neural networks", J. Comput. Civil Eng.-ASCE, 118(4), 360-369.
- Jiang, S.F., Zhang, C.M. and Koh, C.G. (2006), "Structural damage detection by integrating data fusion and probabilistic neural network", Adv. Struct. Eng., 9(4), 445-458. https://doi.org/10.1260/136943306778812787
- Kim, D.H., Kim, D. and Chang, S.K. (2009a), "Application of lattice probabilistic neural network for active response control of offshore structures", Struct. Eng. Mech., 31(2), 153-162. https://doi.org/10.12989/sem.2009.31.2.153
- Kim, D., Kim, D.H., Cui, J., Seo, H.Y. and Lee, Y.H. (2009b), "Iterative neural network strategy for static model identification of an FRP deck", Steel Compos. Struct., 9(5), 445-455. https://doi.org/10.12989/scs.2009.9.5.445
- Kwak, H.G. and Seo, Y.J. (2000), "Long term behavior of composite girder bridges", Comput. Struct., 74(5), 583-599. https://doi.org/10.1016/S0045-7949(99)00064-4
- Lee, J.J., Lee, J.W., Yi, J.H., Yun, C.B. and Jung, H.Y. (2005), "Neural network-based damage detection for bridges considering errors in baseline finite element models", J. Sound Vib., 280(3-5), 555-578. https://doi.org/10.1016/j.jsv.2004.01.003
- Mari, A. (2000), "Numerical simulation of the segmental construction of three dimensional concrete frames", Eng. Struct., 22(6), 585-596. https://doi.org/10.1016/S0141-0296(99)00009-7
- Mo, Y.L., Hung, H.Y. and Zhong, J. (2002), "Investigation of stress-strain relationship of confined concrete in hollow bridge columns using neural networks", Journal of Testing and Evaluation, ASTM, 30(4), 330-339. https://doi.org/10.1520/JTE12323J
- Pendharkar, U. (2007), "Neural network model for composite beams and frames considering cracking and timeeffects", Ph.D. Thesis, IIT Delhi, Delhi.
- Pendharkar, U., Chaudhary, S. and Nagpal, A.K. (2007), "Neural network for bending moment in continuous composite beams considering cracking and time effects in concrete", Eng. Struct., 29(9), 2069-2079. https://doi.org/10.1016/j.engstruct.2006.11.009
- Pendharkar, U., Chaudhary, S. and Nagpal, A.K. (2010), "Neural networks for inelastic mid-span deflections in continuous composite beams", Struct. Eng. Mech., 36(2), 165-179. https://doi.org/10.12989/sem.2010.36.2.165
- SNNS (1998), User's Manual, Ver. 4.2, University of Sttutgart, Institute for Parallel and Distributed High Performance Systems
- Yeung, W.T. and Smith, J.W. (2005), "Damage detection in bridges using neural networks for pattern recognition of vibration signatures", Eng. Struct., 27(5), 685-698. https://doi.org/10.1016/j.engstruct.2004.12.006
Cited by
- Linear and Non-linear Creep models for a multi-layered concrete composite vol.13, pp.4, 2013, https://doi.org/10.1016/j.acme.2013.04.002
- Closed-form expressions for long-term deflections in high-rise composite frames vol.17, pp.1, 2017, https://doi.org/10.1007/s13296-016-0115-7
- Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams vol.11, pp.3, 2013, https://doi.org/10.12989/cac.2013.11.3.237
- Rapid prediction of long-term deflections in composite frames vol.18, pp.3, 2015, https://doi.org/10.12989/scs.2015.18.3.547
- Rapid prediction of deflections in multi-span continuous composite bridges using neural networks vol.15, pp.4, 2015, https://doi.org/10.1007/s13296-015-1211-9
- Explicit expression for effective moment of inertia of RC beams vol.12, pp.3, 2015, https://doi.org/10.1590/1679-78251272
- Optimum seismic design of unbonded post-tensioned precast concrete walls using ANN vol.13, pp.4, 2014, https://doi.org/10.12989/cac.2014.13.4.547
- Rapid prediction of inelastic bending moments in RC beams considering cracking vol.18, pp.6, 2011, https://doi.org/10.12989/cac.2016.18.6.1113
- Neural network based approach for rapid prediction of deflections in RC beams considering cracking vol.19, pp.3, 2011, https://doi.org/10.12989/cac.2017.19.3.293
- Explicit expressions for inelastic design quantities in composite frames considering effects of nearby columns and floors vol.64, pp.4, 2011, https://doi.org/10.12989/sem.2017.64.4.437
- An efficient and novel strategy for control of cracking, creep and shrinkage effects in steel-concrete composite beams vol.70, pp.6, 2019, https://doi.org/10.12989/sem.2019.70.6.751
- A new empirical formula for prediction of the axial compression capacity of CCFT columns vol.33, pp.2, 2019, https://doi.org/10.12989/scs.2019.33.2.181