DOI QR코드

DOI QR Code

Physics based basis function for vibration analysis of high speed rotating beams

  • Ganesh, R. (Department of Aerospace Engineering, Indian Institute of Science) ;
  • Ganguli, Ranjan (Department of Aerospace Engineering, Indian Institute of Science)
  • 투고 : 2009.11.04
  • 심사 : 2011.02.22
  • 발행 : 2011.07.10

초록

The natural frequencies of continuous systems depend on the governing partial differential equation and can be numerically estimated using the finite element method. The accuracy and convergence of the finite element method depends on the choice of basis functions. A basis function will generally perform better if it is closely linked to the problem physics. The stiffness matrix is the same for either static or dynamic loading, hence the basis function can be chosen such that it satisfies the static part of the governing differential equation. However, in the case of a rotating beam, an exact closed form solution for the static part of the governing differential equation is not known. In this paper, we try to find an approximate solution for the static part of the governing differential equation for an uniform rotating beam. The error resulting from the approximation is minimized to generate relations between the constants assumed in the solution. This new function is used as a basis function which gives rise to shape functions which depend on position of the element in the beam, material, geometric properties and rotational speed of the beam. The results of finite element analysis with the new basis functions are verified with published literature for uniform and tapered rotating beams under different boundary conditions. Numerical results clearly show the advantage of the current approach at high rotation speeds with a reduction of 10 to 33% in the degrees of freedom required for convergence of the first five modes to four decimal places for an uniform rotating cantilever beam.

키워드

참고문헌

  1. Al-Qaisia, A. and Al-Bedoor, B. (2005), "Evaluation of different methods for the consideration of the effect of rotation on the stiffening of rotating beams", J. Sound Vib., 280(3-5), 531-553. https://doi.org/10.1016/j.jsv.2003.12.049
  2. Banerjee, J.R. (2000), "Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method", J. Sound Vib., 233(5), 857-875. https://doi.org/10.1006/jsvi.1999.2855
  3. Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall.
  4. Bauchau, O.A. and Hong, C.H. (1987), "Finite element approach to rotor blade modelling", J. Am. Helicopter Soc., 32(1), 60-67. https://doi.org/10.4050/JAHS.32.60
  5. Bazoune, A. and Khulief, Y.A. (1992), "A finite beam element for vibration analysis of rotating tapered timoshenko beams", J. Sound Vib., 156(1), 141-164. https://doi.org/10.1016/0022-460X(92)90817-H
  6. Bazoune, A., Khulief, Y.A. and Stephen, N.G. (1999), "Further results for modal characteristics of rotating tapered timoshenko beams", J. Sound Vib., 219(1), 157-174. https://doi.org/10.1006/jsvi.1998.1906
  7. Chakraborty, A., Gopalakrishnan, S. and Reddy, J.N. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4
  8. Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2002), Concepts and Applications of Finite Element Analysis, John Wiley & Sons, New York.
  9. Fallahi, B., Lai, S.H.Y. and Gupta, R. (1994), "Full beam formulation of a rotating beam-mass system", ASME J. Vib. Acoust., 116(1), 93-99. https://doi.org/10.1115/1.2930403
  10. Fox, C.H.J. and Burdess, J.S. (1979), "The natural frequencies of a rotating cantilever with offset root", J. Sound Vib., 65(2), 151-158. https://doi.org/10.1016/0022-460X(79)90509-1
  11. Gunda, J.B. and Ganguli, R. (2008a), "New rational interpolation functions for finite element analysis of high speed rotating beams", Int. J. Mech. Sci., 50(3), 578-588. https://doi.org/10.1016/j.ijmecsci.2007.07.014
  12. Gunda, J.B. and Ganguli, R. (2008b), "Stiff-string basis functions for vibration analysis of high speed rotating beams", J. Appl. Mech., 75(2), 0245021-0245025.
  13. Gunda, J.B., Singh, A.P., Chhabra, P.S. and Ganguli, R. (2007), "Free vibration analysis of rotating tapered blades using Fourier-p superelement", Struct. Eng. Mech., 27(2), 243-257. https://doi.org/10.12989/sem.2007.27.2.243
  14. Gupta, S. and Manohar, C.S. (2002), "Dynamic stiffness method for circular stochastic timoshenko beams: response variability and reliability analysis", J. Sound Vib., 253(5), 1915-1922.
  15. Hamdan, M.N. and Al-Bedoor, B.O. (2001), "Non-linear free vibrations of a rotating flexible arm", J. Sound Vib., 242(5), 839-853. https://doi.org/10.1006/jsvi.2000.3387
  16. Hashemi, S.M., Richard, M.J. and Dhatt, G. (1999), "A new dynamic finite element formulation for free lateral vibrations of Euler-bernoulli spinning beams using Trigonometric shape functions", J. Sound Vib., 220(4), 601- 624. https://doi.org/10.1006/jsvi.1998.1922
  17. Hildebrand, F.B. (1965), Methods of Applied Mathematics, Prentice Hall.
  18. Hodges, D.H. and Rutkowski, M.J. (1981), "Free-vibration analysis of rotating beams by a variable- order finite element method", AIAA J., 19(11), 1459-1466. https://doi.org/10.2514/3.60082
  19. Huang, K.J. and Liu, T.S. (2001), "Dynamic analysis of rotating beams with nonuniform cross sections using the dynamic stiffness method", ASME J. Vib. Acoust., 123(4), 536-539. https://doi.org/10.1115/1.1400118
  20. Kim, J. (2006), "Rotation effects on vibration of structures seen from a rotating beam simply supported off the rotation axis", ASME J. Vib. Acoust., 128(3), 328-337. https://doi.org/10.1115/1.2172261
  21. Lee, S.Y. and Kuo, Y.H. (1992), "Bending vibrations of a rotating non-uniform beam with an elastically restrained root", J. Sound Vib., 154(3), 441-451. https://doi.org/10.1016/0022-460X(92)90778-V
  22. Lin, S.M. (2001), "The instability and vibration of rotating beams with arbitrary pretwist and an elastically restrained root", ASME J. Appl. Mech., 68(6), 844-853. https://doi.org/10.1115/1.1408615
  23. Lin, S.M. and Lee, S.Y. (2004), "Prediction of vibration and instability of rotating damped beams with an elastically restrained root", Int. J. Mech. Sci., 46(8), 1173-1194. https://doi.org/10.1016/j.ijmecsci.2004.08.002
  24. Naguleswaran, N. (1994), "Lateral vibration of a centrifugally tensioned uniform Euler-bernoulli beam", J. Sound Vib., 176(5), 613-624. https://doi.org/10.1006/jsvi.1994.1402
  25. Pesheck, E., Pierre, C. and Shaw, S.W. (2002), "Modal reduction of a nonlinear rotating beam through nonlinear normal modes", ASME J. Vib. Acoust., 124(2), 229-236. https://doi.org/10.1115/1.1426071
  26. Pnueli, D. (1972), "Natural bending frequency comparable to rotational frequency in rotating cantilever beam", J. Appl. Mech., 39(2), 606-614. https://doi.org/10.1115/1.3422731
  27. Reddy, J.N. (1993), An Introduction to the Finite Element Method, 2nd Edition, McGraw-Hill, New York.
  28. Subrahmanyam, K.B. and Kaza, K.R.V. (1987), "Non-linear flap-lag-extensional vibrations of rotating pretwisted, preconed beams including Coriolis effects", Int. J. Mech. Sci., 29(1), 29-43. https://doi.org/10.1016/0020-7403(87)90072-5
  29. Udupa, K.M. and Varadan, T.K. (1990), "Hierarchical finite element method for rotating beams", J. Sound Vib., 138(3), 447-456. https://doi.org/10.1016/0022-460X(90)90598-T
  30. Wang, G. and Wereley, N.M. (2004), "Free vibration analysis of rotating blades with uniform tapers", AIAA J., 42(12), 2429-2437. https://doi.org/10.2514/1.4302
  31. Wright, A.D., Smith, C.E., Thresher, R.W. and Wang, J.L.C. (1982), "Vibration modes of centrifugally stiffened beams", J. Appl. Mech., 49(2), 197-202. https://doi.org/10.1115/1.3161966
  32. Wright, K. (2007), "Adaptive methods for piecewise polynomial collocation for ordinary differential equations", BIT Numerical Mathematics 47, 197-212. https://doi.org/10.1007/s10543-006-0103-y
  33. Yokoyama, T. (1988), "Free vibration characteristics of rotating Timoshenko beams", Int. J. Mech. Sci., 30(10), 743-755. https://doi.org/10.1016/0020-7403(88)90039-2

피인용 문헌

  1. On the dynamics of rotating, tapered, visco-elastic beams with a heavy tip mass vol.45, pp.1, 2013, https://doi.org/10.12989/sem.2013.45.1.069
  2. Transverse free vibration of non uniform rotating Timoshenko beams with elastically clamped boundary conditions vol.48, pp.6, 2013, https://doi.org/10.1007/s11012-012-9668-5