DOI QR코드

DOI QR Code

Parallel computation for debonding process of externally FRP plated concrete

  • Xu, Tao (Center for Material Failure Modeling Research, Dalian University) ;
  • Zhang, Yongbin (School of Civil Engineering, Dalian University of Technology) ;
  • Liang, Z.Z. (School of Civil Engineering, Dalian University of Technology) ;
  • Tang, Chun-An (School of Civil Engineering, Dalian University of Technology) ;
  • Zhao, Jian (Ecole Polytechnique Federale de Lausanne, Rock Mechanics Laboratory)
  • Received : 2010.02.03
  • Accepted : 2011.03.23
  • Published : 2011.06.25

Abstract

In this paper, the three dimensional Parallel Realistic Failure Process Analysis ($RFPA^{3D}$-Parallel) code based on micromechanical model is employed to investigate the bonding behavior in FRP sheet bonded to concrete in single shear test. In the model, the heterogeneity of brittle disordered material at a meso-scale was taken into consideration in order to realistically demonstrate the mechanical characteristics of FRP-to-concrete. Modified Mohr-coulomb strength criterion with tension cut-off, where a stressed element can damage in shear or in tension, was adopted and a stiffness degradation approach was used to simulate the initiation, propagation and growth of microcracks in the model. In addition, a Master-Slave parallel operation control technique was adopted to implement the parallel computation of a large numerical model. Parallel computational results of debonding of FRP-concrete visually reproduce the spatial and temporal debonding failure progression of microcracks in FRP sheet bonded to concrete, which agrees well with the existing testing results in laboratory. The numerical approach in this study provides a useful tool for enhancing our understanding of cracking and debonding failure process and mechanism of FRP-concrete and our ability to predict mechanical performance and reliability of these FRP sheet bonded to concrete structures.

Keywords

References

  1. Aiello, M.A. and Leone, M. (2008), "Interface analysis between FRP ebr system and concrete", Composites Part B-Eng., 39(4), 618-626. https://doi.org/10.1016/j.compositesb.2007.07.002
  2. Ali-Ahmad, M., Subramaniam, K. and Ghosn, M. (2006), "Experimental investigation and fracture analysis of debonding between concrete and FRP sheets", J. Eng. Mech., 132(9), 914-923. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:9(914)
  3. Bizindavyi, L. and Neale, K.W. (1999), "Transfer lengths and bond strengths for composites bonded to concrete", J. Compos. Constr., 3(4), 153-160. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:4(153)
  4. Bizindavyi, L., Neale, K.W. and Erki, M.A. (2003), "Experimental investigation of bonded fiber reinforced polymer-concrete joints under cyclic loading", J. Compos. Constr., 7(2), 127-134. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:2(127)
  5. Brady, B.H.G. and Brown, E.T. (2004), Rock Mechanics for Underground Mining, Kluwer Academic Publishers, London.
  6. Carpinteri, A., Lacidogna, G. and Paggi, M. (2007), "Acoustic emission monitoring and numerical modeling of FRP delamination in rc beams with non-rectangular cross-section", Mater. Struct., 40(6), 553-566. https://doi.org/10.1617/s11527-006-9162-4
  7. Carpinteri, A. and Paggi, M. (2010), "Analysis of snap-back instability due to end-plate debonding in strengthened beams", J. Eng. Mech., 136(2), 199-208. https://doi.org/10.1061/(ASCE)0733-9399(2010)136:2(199)
  8. Chajes, M.J., Finch, W.W., Januszka, T.F. and Thomson, T.A. (1996), "Bond and force transfer of composite material plates bonded to concrete", Aci. Struct. J., 93(2), 208-217.
  9. Chen, H.Q., Ma, H.F., Tu, J., Cheng, G.Q. and Tang, J.Z. (2008), "Parallel computation of seismic analysis of high arch dam", Earthq. Eng. Eng. Vib., 7(1), 1-11. https://doi.org/10.1007/s11803-008-0733-y
  10. Chen, J.F. and Teng, J.G. (2001), "Anchorage strength models for FRP and steel plates bonded to concrete", J. Struct. Eng.-Asce, 127(7), 784-791. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(784)
  11. Chen, J.F. and Teng, J.G. (2006), "Special issue on bond behaviour of FRP in structures", Adv. Struct. Eng., 9(6), 719-719. https://doi.org/10.1260/136943306779369473
  12. Chen, J.F., Yang, Z.J. and Holt, G.D. (2001), "FRP or steel plateto-concrete bonded joints: Effect of test methods on experimental bond strength", Steel Compos. Struct., 1(2), 231-244. https://doi.org/10.1296/SCS2001.01.02.06
  13. Danielson, K.T., Akers, S.A., O'Daniel, J.L., Adley, M.D. and Garner, S.B. (2008), "Large-scale parallel computation methodologies for highly nonlinear concrete and soil applications", J. Comput. Civil Eng., 22(2), 140-146. https://doi.org/10.1061/(ASCE)0887-3801(2008)22:2(140)
  14. Freddi, F. and Savoia, M. (2008), "Analysis of FRP-concrete debonding via boundary integral equations", Eng. Fract. Mech., 75(6), 1666-1683. https://doi.org/10.1016/j.engfracmech.2007.05.016
  15. Grosse, C.U. and Finck, F. (2006), "Quantitative evaluation of fracture processes in concrete using signal-based acoustic emission techniques", Cement Concrete Compos., 28(4), 330-336. https://doi.org/10.1016/j.cemconcomp.2006.02.006
  16. Jeager, J.C., Cook, N.G.W. and Zimmerman, R. (2007), Fundamentals of Rock Mechanics, Wiley-Blackwell.
  17. Jiang, J. and Zhang, D. (1990), Elastoplastic Finite Element Analysis for Structures, China Astronautic Publishing House, Beijing.
  18. Lemaitre, J. and Desmorat, R. (2005), Engineering Damage Mechanics, Springer-Verlag, Berlin.
  19. Liang, Z.Z. (2005), "Three-dimensional failure process analysis of rock and associated numerical test", PhD, Northeastern University of China, Shenyang.
  20. Lockner, D. (1993), "The role of acoustic emission in the study of rock fracture", Int. J. Rock Mech. Min., 30(7), 883-899. https://doi.org/10.1016/0148-9062(93)90041-B
  21. Lockner, D.A., Byerlee, J.D., Kuksenko, V., Ponomarev, A. and Sidorin, A. (1991), "Quasi-static fault growth and shear fracture energy in granite", Nature, 350(39-42).
  22. Lu, X.Z., Teng, J.G., Ye, L.P. and Jiang, J.J. (2005a), "Bond-slip models for FRP sheets/plates bonded to concrete", Eng. Struct., 27(6), 920-937. https://doi.org/10.1016/j.engstruct.2005.01.014
  23. Lu, X.Z., Ye, L.P., Teng, J.G. and Jiang, J.J. (2005b), "Meso-scale finite element model for FRP sheets/plates bonded to concrete", Eng. Struct., 27(4), 564-575. https://doi.org/10.1016/j.engstruct.2004.11.015
  24. Mazzotti, C., Savoia, M. and Ferracuti, B. (2008), "An experimental study on delamination of FRP plates bonded to concrete", Constr. Build. Mater., 22(7), 1409-1421. https://doi.org/10.1016/j.conbuildmat.2007.04.009
  25. Rabinovitch, O. (2008), "Debonding analysis of fiber-reinforced-polymer strengthened beams: Cohesive zone modeling versus a linear elastic fracture mechanics approach", Eng. Fract. Mech., 75(10), 2842-2859. https://doi.org/10.1016/j.engfracmech.2008.01.003
  26. Saadatmanesh, H. and Ehsani, M.R. (1991), "Rc beams strengthened with GFRP plates. 1. Experimental-study", J. Struct. Eng.-Asce, 117(11), 3417-3433. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:11(3417)
  27. Saxena, P., Toutanji, H. and Noumowe, A. (2008), "Failure analysis of FRP-strengthened RC beams", J. Compos. Constr., 12(1), 2-14. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:1(2)
  28. Tang, C.A. (1997), "Numerical simulation of progressive rock failure and associated seismicity", Int. J. Rock Mech. Min., 34(2), 249-261. https://doi.org/10.1016/S0148-9062(96)00039-3
  29. Tang, C.A., Liang, Z.Z., Zhang, Y.B., Chang, X., Tao, X., Wang, D.G., Zhang, J.X., Liu, J.S., Zhu, W.C. and Elsworth, D. (2008), "Fracture spacing in layered materials: A new explanation based on two-dimensional failure process modeling", Am. J. Sci., 308(1), 49-72. https://doi.org/10.2475/01.2008.02
  30. Tang, C.A., Liu, H., Lee, P.K.K., Tsui, Y. and Tham, L.G. (2000), "Numerical studies of the influence of microstructure on rock failure in uniaxial compression - Part I: Effect of heterogeneity", Int. J. Rock Mech. Min., 37(4), 555-569. https://doi.org/10.1016/S1365-1609(99)00121-5
  31. Tang, C.A., Tham, L.G., Wang, S.H., Liu, H. and Li, W.H. (2007), "A numerical study of the influence of heterogeneity on the strength characterization of rock under uniaxial tension", Mech. Mater., 39(4), 326-339. https://doi.org/10.1016/j.mechmat.2006.05.006
  32. Tang, C.A., Zhang, Y.B., Liang, Z.Z., Xu, T., Tham, L.G., Lindqvist, P.A., Kou, S.Q. and Liu, H.Y. (2006), "Fracture spacing in layered materials and pattern transition from parallel to polygonal fractures", Phys. Rev. E, 73(5), 0561201-0561209.
  33. Teng, J.G., Cao, S.Y. and Lam, L. (2001), "Behaviour of gfrp-strengthened rc cantilever slabs", Constr. Build Mater., 15(7), 339-349. https://doi.org/10.1016/S0950-0618(01)00016-2
  34. Weibull, W. (1951), "A statistical distribution function of wide applicability", J. Appl. Mech., 18(3), 293-297.
  35. Wong, R.S.Y. and Vecchio, F.J. (2003), "Towards modeling of reinforced concrete members with externally bonded fiber-reinforced polymer composite", Aci Struct. J., 100(1), 47-55.
  36. Wu, Z., Yuan, H. and Niu, H. (2002), "Stress transfer and fracture propagation in different kinds of adhesive joints", J. Eng. Mech., 128(5), 562-573. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:5(562)
  37. Xiao, J., Li, J. and Zha, Q. (2004), "Experimental study on bond behavior between FRP and concrete", Constr. Build Mater., 18(10), 745-752. https://doi.org/10.1016/j.conbuildmat.2004.04.026
  38. Xu, T., Ma, T.H., Tang, C.A. and Liang, Z.Z. (2006), "Three dimensional numerical approach to splitting failure of rock discs", Key Eng. Mater., 353-358, 921-924.
  39. Yang, J., Ye, J. and Niu, Z. (2008), "Simplified solutions for the stress transfer in concrete beams bonded with FRP plates", Eng. Struct., 30(2), 533-545. https://doi.org/10.1016/j.engstruct.2007.04.018
  40. Yao, J., Teng, J.G. and Chen, J.F. (2005), "Experimental study on FRP-to-concrete bonded joints", Compos. Part B-Eng., 36(2), 99-113. https://doi.org/10.1016/j.compositesb.2004.06.001
  41. Yuan, H., Teng, J.G., Seracino, R., Wu, Z.S. and Yao, J. (2004), "Full-range behavior of FRP-to-concrete bonded joints", Eng. Struct., 26(5), 553-565. https://doi.org/10.1016/j.engstruct.2003.11.006
  42. Zhang, Y. (2007), "The research on parallel compuatation method of rock failure processanalysis", Ph.D, Northeastern University, Shenyang.
  43. Zhang, Y.B., Tang, C.A., Liang, Z.Z., Xu, T. and Li, L.L. (2006), "Research on parallel computational method of rock failure process analysis system", Chin. J. Rock Mech. Eng., 25(9), 1795-1801.
  44. Zhu, W.C., Teng, J.G. and Tang, C.A. (2004), "Mesomechanical model for concrete. Part I: Model development", Mag. Concrete Res., 56(6), 313-330. https://doi.org/10.1680/macr.2004.56.6.313

Cited by

  1. Finite element analysis of width effect in interface debonding of FRP plate bonded to concrete vol.93, 2015, https://doi.org/10.1016/j.finel.2014.08.009
  2. Mesoscale Modeling of Spallation Failure in Fiber-Reinforced Concrete Slab due to Impact Loading vol.16, pp.1, 2016, https://doi.org/10.1061/(ASCE)GM.1943-5622.0000496
  3. Efficient parameters to predict the nonlinear behavior of FRP retrofitted RC columns vol.70, pp.6, 2019, https://doi.org/10.12989/sem.2019.70.6.703