References
- ABAQUS. (2007), Version 6.7 Documentation, Dassault Systemes Simulia Corp.
- Abed-Meraim, F. (1999), "Sufficient conditions for stability of viscous solids", Comptes rendus de l'Academie des sciences. Serie IIb, mecanique, physique, astronomie, 327(1), 25-31. https://doi.org/10.1016/S1287-4620(99)80006-4
- Abed-Meraim, F. and Combescure, A. (2002), "SHB8PS - a new adaptive, assumed-strain continuum mechanics shell element for impact analysis", Comput. Struct., 80, 791-803. https://doi.org/10.1016/S0045-7949(02)00047-0
- Abed-Meraim, F. and Nguyen, Q.S. (2007), "A quasi-static stability analysis for Biot's equation and standard dissipative systems", Eur. J. Mech. - A/Solids, 26, 383-393. https://doi.org/10.1016/j.euromechsol.2006.06.005
- Abed-Meraim, F. and Combescure, A. (2009), "An improved assumed strain solid-shell element formulation with physical stabilization for geometric non-linear applications and elastic-plastic stability analysis", Int. J. Numer. Meth. Eng., 80, 1640-1686. https://doi.org/10.1002/nme.2676
- Abed-Meraim, F. and Combescure, A. (2011), "New prismatic solid-shell element: assumed strain formulation and hourglass mode analysis", Struct. Eng. Mech., 37, 253-256. https://doi.org/10.12989/sem.2011.37.2.253
- Alves de Sousa, R.J., Cardoso, R.P., Fontes Valente, R.A., Yoon, J.W., Gracio, J.J. and Natal Jorge, R.M. (2006), "A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness-Part II: Nonlinear applications", Int. J. Numer. Meth. Eng., 67, 160-188. https://doi.org/10.1002/nme.1609
- Areias, P.M.A., César de Sá, J.M.A., Conceição António, C.A. and Fernandes, A.A. (2003), "Analysis of 3D problems using a new enhanced strain hexahedral element", Int. J. Numer. Meth. Eng., 58, 1637-1682. https://doi.org/10.1002/nme.835
- Betsch, P., Gruttmann, F. and Stein, E. (1996), "A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains", Comput. Meth. Appl. Mech. Eng., 130, 57-79. https://doi.org/10.1016/0045-7825(95)00920-5
- Boutyour, E.H., Zahrouni, H., Potier-Ferry, M. and Boudi, M. (2004), "Bifurcation points and bifurcated branches by an asymptotic numerical method and Padé approximants", Int. J. Numer. Meth. Eng., 60, 1987- 2012. https://doi.org/10.1002/nme.1033
- Budiansky, B. (1974), "Theory of buckling and post-buckling behaviour of elastic structures", Adv. Appl. Mech., 14, 1-65. https://doi.org/10.1016/S0065-2156(08)70030-9
- Chen, Y.I. and Wu, G.Y. (2004), "A mixed 8-node hexahedral element based on the Hu-Washizu principle and the field extrapolation technique", Struct. Eng. Mech., 17, 113-140. https://doi.org/10.12989/sem.2004.17.1.113
- Cho, C., Park, H.C. and Lee, S.W. (1998), "Stability analysis using a geometrically nonlinear assumed strain solid shell element model", Finite Elem. Anal. Des., 29, 121-135. https://doi.org/10.1016/S0168-874X(98)00021-3
- Chroscielewski, J., Makowski, J. and Stumpf, H. (1992), "Genuinely resultant shell finite elements accounting for geometric and material non-linearity", Int. J. Numer. Meth. Eng., 35, 63-94. https://doi.org/10.1002/nme.1620350105
- Crisfield, M.A. (1981), "A fast incremental/iterative solution procedure that handles snap-through", Comput. Struct., 13, 55-62. https://doi.org/10.1016/0045-7949(81)90108-5
- DaDeppo, D.A. and Schmidt, R. (1975), "Instability of clamped-hinged circular arches subjected to a point load", J. Appl. Mech. Trans. ASME, 42, 894-896. https://doi.org/10.1115/1.3423734
- Eriksson, A., Pacoste, C. and Zdunek, A. (1999), "Numerical analysis of complex instability behaviour using incremental-iterative strategies", Comput. Meth. Appl. Mech. Eng., 179, 265-305. https://doi.org/10.1016/S0045-7825(99)00044-4
- Hauptmann, R. and Schweizerhof, K. (1998), "A systematic development of solid-shell element formulations for linear and non-linear analyses employing only displacement degrees of freedom", Int. J. Numer. Meth. Eng., 42, 49-69. https://doi.org/10.1002/(SICI)1097-0207(19980515)42:1<49::AID-NME349>3.0.CO;2-2
- Hitchings, D., Kamoulakos, A. and Davies, G.A.O. (1987), Linear Statics Benchmarks, National Agency for Finite Element Methods and Standards, Glasgow, UK.
- Hutchinson, J.W. and Koiter, W.T. (1970), "Post-buckling theory", Appl. Mech. Rev., 23, 1353-1366.
- Ibrahimbegovic, A. and Al Mikdad, M. (2000), "Quadratically convergent direct calculation of critical points for 3D structures undergoing finite rotations", Comput. Meth. Appl. Mech. Eng., 189, 107-120. https://doi.org/10.1016/S0045-7825(99)00291-1
- Killpack, M. and Abed-Meraim, F. (2011), "Limit-point buckling analyses using solid, shell and solid-shell elements", J. Mech. Sci. Tech., 25, 1105-1117. https://doi.org/10.1007/s12206-011-0305-3
- Kim, J.H. and Kim, Y.H. (2001), "A predictor-corrector method for structural nonlinear analysis", Comput. Meth. Appl. Mech. Eng., 191, 959-974. https://doi.org/10.1016/S0045-7825(01)00296-1
- Kim, J.H. and Kim, Y.H. (2002), "A three-node C0 ANS element for geometrically non-linear structural analysis", Comput. Meth. Appl. Mech. Eng., 191, 4035-4059. https://doi.org/10.1016/S0045-7825(02)00338-9
- Kim, K.D., Liu, G.Z. and Han, S.C. (2005), "A resultant 8-node solid-shell element for geometrically nonlinear analysis", Comput. Mech., 35, 315-331. https://doi.org/10.1007/s00466-004-0606-9
- Klinkel, S. and Wagner, W. (1997), "A geometrical non-linear brick element based on the EAS-method", Int. J. Numer. Meth. Eng., 40, 4529-4545. https://doi.org/10.1002/(SICI)1097-0207(19971230)40:24<4529::AID-NME271>3.0.CO;2-I
- Koiter, W.T. (1945), "On the stability of elastic equilibrium", Ph.D. Thesis, Delft. English translation NASA Techn. Trans. F10, 1967.
- Kouhia, R. and Mikkola, M. (1989), "Tracing the equilibrium path beyond simple critical points", Int. J. Numer. Meth. Eng., 28, 2923-2941. https://doi.org/10.1002/nme.1620281214
- Lee, S.L., Manuel, F.S. and Rossow, E.C. (1968), "Large deflection and stability of elastic frames", ASCE J. Eng. Mech. Div., 94, 521-533.
- Legay, A. and Combescure, A. (2003), "Elastoplastic stability analysis of shells using the physically stabilized finite element SHB8PS", Int. J. Numer. Meth. Eng., 57, 1299-1322. https://doi.org/10.1002/nme.728
- MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy", Finite Elem. Anal. Des., 1, 3-20. https://doi.org/10.1016/0168-874X(85)90003-4
- Planinc, I. and Saje, M. (1999), "A quadratically convergent algorithm for the computation of stability points: The application of the determinant of the tangent stiffness matrix", Comput. Meth. Appl. Mech. Eng., 169, 89- 105. https://doi.org/10.1016/S0045-7825(98)00178-9
- Prinja, N.K. and Clegg, R.A. (1993), Assembly Benchmark Tests for 3-D Beams and Shells Exhibiting Geometric Non-Linear Behaviour, NAFEMS, Glasgow, UK.
- Ramm, E. (1981), "Strategies for tracing the nonlinear response near limit points", Nonlinear Finite Element Analysis in Structural Mechanics (Eds. Wunderlich, W., Stein, E. and Bathe, K.J.), Springer-Verlag, New York.
- Reese, S. (2007), "A large deformation solid-shell concept based on reduced integration with hourglass stabilization", Int. J. Numer. Meth. Eng., 69, 1671-1716. https://doi.org/10.1002/nme.1827
- Riks, E. (1979), "An incremental approach to the solution of snapping and buckling problems", Int. J. Solids Struct., 15, 529-551. https://doi.org/10.1016/0020-7683(79)90081-7
- Schreyer, H. and Masur, E. (1966), "Buckling of shallow arches", J. Eng. Mech. Div.-ASCE, 92, 1-19.
- Sharifi, P. and Popov, E.P. (1971), "Nonlinear buckling analysis of sandwich arches", J. Eng. Mech. Div.-ASCE, 97, 1397-1412.
- Smolenski, W.M. (1999), "Statically and kinematically exact nonlinear theory of rods and its numerical verification", Comput. Meth. Appl. Mech. Eng., 178, 89-113. https://doi.org/10.1016/S0045-7825(99)00006-7
- Sze, K.Y., Liu, X.H. and Lo, S.H. (2004), "Popular benchmark problems for geometric nonlinear analysis of shells", Finite Elem. Anal. Des., 40, 1551-1569. https://doi.org/10.1016/j.finel.2003.11.001
- Sze, K.Y. and Zheng, S.J. (2002), "A stabilized hybrid-stress solid element for geometrically nonlinear homogeneous and laminated shell analyses", Comput. Meth. Appl. Mech. Eng., 191, 1945-1966. https://doi.org/10.1016/S0045-7825(01)00362-0
- Thompson, J.M.T. and Hunt, G.W. (1973), A General Theory of Elastic Stability, Wiley, New York.
- Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw-Hill, New York.
- Voce, E. (1948), "The relation between the stress and strain for homogeneous deformation", J. Inst. Metals, 74, 537-562.
- Wagner, W. and Wriggers, P. (1988), "A simple method for the calculation of post-critical branches", Eng. Comput., 5, 103-109. https://doi.org/10.1108/eb023727
- Wardle, B.L. (2006), "The incorrect benchmark shell buckling solution", Proceedings of the 47th AIAA Structures, Dynamics, and Materials Conference, Newport RI, doc. 2028.
- Wardle, B.L. (2008), "Solution to the incorrect benchmark shell-buckling problem", AIAA J., 46, 381-387. https://doi.org/10.2514/1.26698
- Weinitshke, H.J. (1985), "On the calculation of limit and bifurcation points in stability problems of elastic shells", Int. J. Solids Struct., 21, 79-95. https://doi.org/10.1016/0020-7683(85)90106-4
- Wriggers, P. and Simo, J.C. (1990), "A general procedure for the direct computation of turning and bifurcation points", Int. J. Numer. Meth. Eng., 30, 155-176. https://doi.org/10.1002/nme.1620300110
Cited by
- Application of the continuum shell finite element SHB8PS to sheet forming simulation using an extended large strain anisotropic elastic–plastic formulation vol.82, pp.9, 2012, https://doi.org/10.1007/s00419-012-0620-x
- Comprehensive evaluation of structural geometrical nonlinear solution techniques Part I: Formulation and characteristics of the methods vol.48, pp.6, 2013, https://doi.org/10.12989/sem.2013.48.6.849
- A new assumed strain solid-shell formulation “SHB6” for the six-node prismatic finite element vol.25, pp.9, 2011, https://doi.org/10.1007/s12206-011-0710-7
- Assumed-strain solid–shell formulation for the six-node finite element SHB6: evaluation on non-linear benchmark problems vol.21, pp.1-2, 2012, https://doi.org/10.1080/17797179.2012.702430
- An Optimized Approach for Tracing Pre- and Post-Buckling Equilibrium Paths of Space Trusses pp.1793-6764, 2018, https://doi.org/10.1142/S0219455419500408
- Limit-point buckling analyses using solid, shell and solid-shell elements vol.25, pp.5, 2011, https://doi.org/10.1007/s12206-011-0305-3