DOI QR코드

DOI QR Code

The construction of multivariable Reissner-Mindlin plate elements based on B-spline wavelet on the interval

  • Zhang, Xingwu (State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University) ;
  • Chen, Xuefeng (State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University) ;
  • He, Zhengjia (State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University)
  • Received : 2010.05.06
  • Accepted : 2011.02.22
  • Published : 2011.06.25

Abstract

In the present study, a new kind of multivariable Reissner-Mindlin plate elements with two kinds of variables based on B-spline wavelet on the interval (BSWI) is constructed to solve the static and vibration problems of a square Reissner-Mindlin plate, a skew Reissner-Mindlin plate, and a Reissner-Mindlin plate on an elastic foundation. Based on generalized variational principle, finite element formulations are derived from generalized potential energy functional. The two-dimensional tensor product BSWI is employed to form the shape functions and construct multivariable BSWI elements. The multivariable wavelet finite element method proposed here can improve the solving accuracy apparently because generalized stress and strain are interpolated separately. In addition, compared with commonly used Daubechies wavelet finite element method, BSWI has explicit expression and a very good approximation property which guarantee the satisfying results. The efficiency of the proposed multivariable Reissner-Mindlin plate elements are verified through some numerical examples in the end.

Keywords

References

  1. Basu, P.K., Jorge, A.B. and Badri, S. (2003), "Higher-order modeling of continua by finite-element, boundaryelement, Meshless, and wavelet methods", Comput. Math. Appl., 46, 15-33. https://doi.org/10.1016/S0898-1221(03)90078-2
  2. Bathe, K.J., Bucalem, M. and Brezzi, F. (1990), "Displacement and stress convergence of our MITC plate bending elements", Eng. Comput., 7(4), 291-302. https://doi.org/10.1108/eb023816
  3. Brezzi, F., Bathe, K.J. and Fortin, M. (1989), "Mixed-Interpolated elements for Reissner-Mindlin plates", Int. J. Numer. Meth. Eng., 28, 1787-1801. https://doi.org/10.1002/nme.1620280806
  4. Canuto, C., Tabacco, A. and Urban, K. (1996), "The wavelet element method Part I: Construction and analysis", Appl. Comput. Harmon. Analy., 6, 1-52.
  5. Canuto, C., Tabacco, A. and Urban, K. (2000), "The wavelet element method Part II: Realization and Additional Feature in 2D and 3D", Appl. Comput. Harmon. Analy., 8, 123-165. https://doi.org/10.1006/acha.2000.0282
  6. Chen, W.H. and Wu, C.W. (1996), "Extension of spline wavelets element method to membrane vibration analysis", Comput. Mech., 18(1), 46-54. https://doi.org/10.1007/BF00384175
  7. Chen, X.F., Yang, S.J. and He, Z.J. (2004), "The construction of wavelet finite element and its application", Finite Elem. Analys. Des., 40, 541-554. https://doi.org/10.1016/S0168-874X(03)00077-5
  8. Chui, C.K. and Ewald, Q. (1992), "Wavelets on a bounded interval", Numer. Meth. Approx. Theory, 1, 53-57.
  9. Cohen, A. (2003), Numerical Analysis of Wavelet Method, Elsevier Press, Amsterdam, Holland.
  10. Diaz, L.A., Martin, M.T. and Vampa, V. (2009), "Daubechies wavelet beam and plate finite elements", Finite Elem. Analys. Des., 45(3), 200-209. https://doi.org/10.1016/j.finel.2008.09.006
  11. Goswami, J.C., Chan, A.K. and Chui, C.K. (1995), "On solving first-kind integral equations using wavelets on a bounded interval", IEEE T. Antenn. Propag., 43, 614-622. https://doi.org/10.1109/8.387178
  12. Han, J.G., Ren, W.X. and Huang, Y. (2005), "A multivariable wavelet-based finite element method and its application to thick plates", Finite Elem. Analys. Des., 41, 821-833. https://doi.org/10.1016/j.finel.2004.11.001
  13. He, Y.M. and Chen, X.F. (2008), "Multiresolution analysis for finite element method using interpolating wavelet and lifting scheme", Commun. Numer. Meth. Eng., 24(11), 1045-1066.
  14. Hellinger, E. (1914), "Der Allgemeine Ansatz der Mechanik der Kontinua", Encyclopadia der Matematischen Wissenschaften, 4.
  15. Hu, B., Wang, Z. and Xu, Y.C. (2010), "Combined hybrid method applied in the Reissner-Mindlin plate model", Finite Elem. Analy. Des., 46(5), 428-437. https://doi.org/10.1016/j.finel.2010.01.003
  16. Hu, H.C. (1954), "On some variational principles in the theory of elasticity and the theory of plasticity", Acta Physica Sinica, 10(3), 259-289.
  17. Hu, H.C. (1981), The Variational Principle of Elastic Mechanics and Its Application, Science Press, Beijing.
  18. Lee, P.S. and Bathe, K.J. (2010), "The quadratic MITC plate and MITC shell elements in plate bending", Adv. Eng. Software, 41, 712-728. https://doi.org/10.1016/j.advengsoft.2009.12.011
  19. Liew, K.M., Xiang, Y., Kittipornchai, S. and Wang, C.M. (1993), "Vibration of thick skew plates based on Mindlin shear deformation plate theory", J. Sound Vib., 168(1), 39-69. https://doi.org/10.1006/jsvi.1993.1361
  20. Liu, Y. and Soh, C.K. (2007), "Shear correction for Mindlin type plate and shell elements", Int. J. Numer. Meth. Eng., 69(13), 2789-2806. https://doi.org/10.1002/nme.1869
  21. Liu, Y., Hu, N., Yan, C., Peng, X. and Yan, B. (2009), "Construction of a Mindlin pseudospectral plate element and evaluating efficiency of the element", Finite Elem. Analys. Des., 45(8-9), 538-546. https://doi.org/10.1016/j.finel.2009.03.004
  22. Long, Y.Q. and Xi, F. (1992), "A universal method for including shear deformation in thin plate elements", Int. J. Numer. Meth. Eng., 34, 171-177. https://doi.org/10.1002/nme.1620340110
  23. Long, Y.Q., Long, Z.F. et al. (2004), A New Theory of Finite Element Method, Tsinghua University Press, Beijing.
  24. Morley, L.S.D. (1963), Skew Plates and Structures, Pergamon Press, New York.
  25. Petersen, S., Farhat, C. and Tezaur, R. (2009), "A space-time discontinuous Galerkin method for the solution of the wave equation in the time domain", Int. J. Numer. Meth. Eng., 78, 275-295. https://doi.org/10.1002/nme.2485
  26. Quak, E. and Weyrich, N. (1994), "Decomposition and reconstruction algorithms for spline wavelets on a bounded interval", Appl. Comput. Harmon. Analy., 1(3), 217-231. https://doi.org/10.1006/acha.1994.1009
  27. Rao, H.V.S.G. and Chaudhary, V.K. (1998), "Analysis of skew and triangular plates in bending", Comput. Struct., 28(2), 223-235.
  28. Reissner, E. (1950), "On a variational theorem in elasticity", J. Math. Phys., 29, 90-95. https://doi.org/10.1002/sapm195029190
  29. Shen, P.C. (1991), Spline Finite Methods in Structural Analysis, Hydraulic and Electric Press, Beijing.
  30. Shen, P.C. (1997), Multivariable Spline Finite Element Method, Science Press, Beijing.
  31. Shen, P.C. and He, P.X. (1995), "Bending analysis of rectangular moderately thick plates using spline finiteelement method", Int. J. Solids Struct., 54(6), 1023-1029.
  32. Shen, P.C., He, P.X. and Su, G.L. (1992), "Stability analysis for plates using the multivariable spline element method", Comput. Struct., 45(5-6), 1073-1077. https://doi.org/10.1016/0045-7949(92)90062-5
  33. Wang, Y.M., Chen, X.F., He, Y.M. and He, Z.J. (2010), "New decoupled wavelet bases for multiresolution structural analysis", Struct. Eng. Mech., 35(2), 175-190. https://doi.org/10.12989/sem.2010.35.2.175
  34. Warburton, G.B. (1954), "The vibration of rectangular plates", Proceed. Institut. Mech. Eng., 168, 371-385. https://doi.org/10.1243/PIME_PROC_1954_168_040_02
  35. Washizu, K. (1955), "On the variational principles of elasticity and plasticity", Aeroelasticity and Structures Research Laboratory, Massachusetts Institute of Technology, Technical Report, 25-18.
  36. Xiang, J.W. and Chen, X.F. (2006), "The construction of plane elastomechanics and Mindlin plate elements of B-spline wavelet on the interval", Finite Elem. Analy. Des., 42, 1269-1280. https://doi.org/10.1016/j.finel.2006.06.006
  37. Xiang, J.W., Chen, X. and He, Z. (2007), "Static and vibration analysis of thin plates by using finite element method of B-spline wavelet on the interval", Struct. Eng. Mech., 25(5), 613-629. https://doi.org/10.12989/sem.2007.25.5.613
  38. Xiang, Y., Lai, S.K. and Zhou, L. (2010), "DSC-element method for free vibration analysis of rectangular Mindlin plates", Int. J. Mech. Sci., 52(4), 548-560. https://doi.org/10.1016/j.ijmecsci.2009.12.001
  39. Zhang, X.W., Chen, X.F., Wang, X.Z. and He, Z.J. (2010), "Multivariable finite elements based on B-spline wavelet on the interval for thin plate static and vibration analysis", Finite Elem. Analys. Des., 46(5), 416-427. https://doi.org/10.1016/j.finel.2010.01.002
  40. Zienkiewicz, D.L. (1988), "A robust triangular plate bending element of the Reissener-Mindlin type", Int. J. Numer. Meth. Eng., 26, 1169-1184. https://doi.org/10.1002/nme.1620260511
  41. Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2005), The Finite Element Method, Heinemann, Butterworth.

Cited by

  1. Hermitian Mindlin Plate Wavelet Finite Element Method for Load Identification vol.2016, 2016, https://doi.org/10.1155/2016/8618202
  2. Multivariable wavelet finite element-based vibration model for quantitative crack identification by using particle swarm optimization vol.375, 2016, https://doi.org/10.1016/j.jsv.2016.04.018
  3. Load identification in one dimensional structure based on hybrid finite element method vol.60, pp.4, 2017, https://doi.org/10.1007/s11431-016-0507-5
  4. Analysis of shallow hyperbolic shell by different kinds of wavelet elements based on B-spline wavelet on the interval vol.40, pp.3, 2016, https://doi.org/10.1016/j.apm.2015.09.036
  5. A Stochastic Wavelet Finite Element Method for 1D and 2D Structures Analysis vol.2014, 2014, https://doi.org/10.1155/2014/104347
  6. Hermitian plane wavelet finite element method: Wave propagation and load identification vol.72, pp.12, 2016, https://doi.org/10.1016/j.camwa.2016.10.019
  7. High-frequency vibration analysis of thin plate based on wavelet-based FEM using B-spline wavelet on interval vol.60, pp.5, 2017, https://doi.org/10.1007/s11431-016-0140-1
  8. Multivariable wavelet finite element for flexible skew thin plate analysis vol.57, pp.8, 2014, https://doi.org/10.1007/s11431-014-5573-6
  9. Analysis of Laminated Plates and Shells Using B-Spline Wavelet on Interval Finite Element vol.17, pp.06, 2017, https://doi.org/10.1142/S0219455417500626
  10. Wavelet Finite Element Method Analysis of Bending Plate Based on Hermite Interpolation vol.389, pp.1662-7482, 2013, https://doi.org/10.4028/www.scientific.net/AMM.389.267
  11. Static and dynamic analysis of cylindrical shell by different kinds of B-spline wavelet finite elements on the interval vol.36, pp.4, 2011, https://doi.org/10.1007/s00366-019-00804-2