References
- Basu, P.K., Jorge, A.B. and Badri, S. (2003), "Higher-order modeling of continua by finite-element, boundaryelement, Meshless, and wavelet methods", Comput. Math. Appl., 46, 15-33. https://doi.org/10.1016/S0898-1221(03)90078-2
- Bathe, K.J., Bucalem, M. and Brezzi, F. (1990), "Displacement and stress convergence of our MITC plate bending elements", Eng. Comput., 7(4), 291-302. https://doi.org/10.1108/eb023816
- Brezzi, F., Bathe, K.J. and Fortin, M. (1989), "Mixed-Interpolated elements for Reissner-Mindlin plates", Int. J. Numer. Meth. Eng., 28, 1787-1801. https://doi.org/10.1002/nme.1620280806
- Canuto, C., Tabacco, A. and Urban, K. (1996), "The wavelet element method Part I: Construction and analysis", Appl. Comput. Harmon. Analy., 6, 1-52.
- Canuto, C., Tabacco, A. and Urban, K. (2000), "The wavelet element method Part II: Realization and Additional Feature in 2D and 3D", Appl. Comput. Harmon. Analy., 8, 123-165. https://doi.org/10.1006/acha.2000.0282
- Chen, W.H. and Wu, C.W. (1996), "Extension of spline wavelets element method to membrane vibration analysis", Comput. Mech., 18(1), 46-54. https://doi.org/10.1007/BF00384175
- Chen, X.F., Yang, S.J. and He, Z.J. (2004), "The construction of wavelet finite element and its application", Finite Elem. Analys. Des., 40, 541-554. https://doi.org/10.1016/S0168-874X(03)00077-5
- Chui, C.K. and Ewald, Q. (1992), "Wavelets on a bounded interval", Numer. Meth. Approx. Theory, 1, 53-57.
- Cohen, A. (2003), Numerical Analysis of Wavelet Method, Elsevier Press, Amsterdam, Holland.
- Diaz, L.A., Martin, M.T. and Vampa, V. (2009), "Daubechies wavelet beam and plate finite elements", Finite Elem. Analys. Des., 45(3), 200-209. https://doi.org/10.1016/j.finel.2008.09.006
- Goswami, J.C., Chan, A.K. and Chui, C.K. (1995), "On solving first-kind integral equations using wavelets on a bounded interval", IEEE T. Antenn. Propag., 43, 614-622. https://doi.org/10.1109/8.387178
- Han, J.G., Ren, W.X. and Huang, Y. (2005), "A multivariable wavelet-based finite element method and its application to thick plates", Finite Elem. Analys. Des., 41, 821-833. https://doi.org/10.1016/j.finel.2004.11.001
- He, Y.M. and Chen, X.F. (2008), "Multiresolution analysis for finite element method using interpolating wavelet and lifting scheme", Commun. Numer. Meth. Eng., 24(11), 1045-1066.
- Hellinger, E. (1914), "Der Allgemeine Ansatz der Mechanik der Kontinua", Encyclopadia der Matematischen Wissenschaften, 4.
- Hu, B., Wang, Z. and Xu, Y.C. (2010), "Combined hybrid method applied in the Reissner-Mindlin plate model", Finite Elem. Analy. Des., 46(5), 428-437. https://doi.org/10.1016/j.finel.2010.01.003
- Hu, H.C. (1954), "On some variational principles in the theory of elasticity and the theory of plasticity", Acta Physica Sinica, 10(3), 259-289.
- Hu, H.C. (1981), The Variational Principle of Elastic Mechanics and Its Application, Science Press, Beijing.
- Lee, P.S. and Bathe, K.J. (2010), "The quadratic MITC plate and MITC shell elements in plate bending", Adv. Eng. Software, 41, 712-728. https://doi.org/10.1016/j.advengsoft.2009.12.011
- Liew, K.M., Xiang, Y., Kittipornchai, S. and Wang, C.M. (1993), "Vibration of thick skew plates based on Mindlin shear deformation plate theory", J. Sound Vib., 168(1), 39-69. https://doi.org/10.1006/jsvi.1993.1361
- Liu, Y. and Soh, C.K. (2007), "Shear correction for Mindlin type plate and shell elements", Int. J. Numer. Meth. Eng., 69(13), 2789-2806. https://doi.org/10.1002/nme.1869
- Liu, Y., Hu, N., Yan, C., Peng, X. and Yan, B. (2009), "Construction of a Mindlin pseudospectral plate element and evaluating efficiency of the element", Finite Elem. Analys. Des., 45(8-9), 538-546. https://doi.org/10.1016/j.finel.2009.03.004
- Long, Y.Q. and Xi, F. (1992), "A universal method for including shear deformation in thin plate elements", Int. J. Numer. Meth. Eng., 34, 171-177. https://doi.org/10.1002/nme.1620340110
- Long, Y.Q., Long, Z.F. et al. (2004), A New Theory of Finite Element Method, Tsinghua University Press, Beijing.
- Morley, L.S.D. (1963), Skew Plates and Structures, Pergamon Press, New York.
- Petersen, S., Farhat, C. and Tezaur, R. (2009), "A space-time discontinuous Galerkin method for the solution of the wave equation in the time domain", Int. J. Numer. Meth. Eng., 78, 275-295. https://doi.org/10.1002/nme.2485
- Quak, E. and Weyrich, N. (1994), "Decomposition and reconstruction algorithms for spline wavelets on a bounded interval", Appl. Comput. Harmon. Analy., 1(3), 217-231. https://doi.org/10.1006/acha.1994.1009
- Rao, H.V.S.G. and Chaudhary, V.K. (1998), "Analysis of skew and triangular plates in bending", Comput. Struct., 28(2), 223-235.
- Reissner, E. (1950), "On a variational theorem in elasticity", J. Math. Phys., 29, 90-95. https://doi.org/10.1002/sapm195029190
- Shen, P.C. (1991), Spline Finite Methods in Structural Analysis, Hydraulic and Electric Press, Beijing.
- Shen, P.C. (1997), Multivariable Spline Finite Element Method, Science Press, Beijing.
- Shen, P.C. and He, P.X. (1995), "Bending analysis of rectangular moderately thick plates using spline finiteelement method", Int. J. Solids Struct., 54(6), 1023-1029.
- Shen, P.C., He, P.X. and Su, G.L. (1992), "Stability analysis for plates using the multivariable spline element method", Comput. Struct., 45(5-6), 1073-1077. https://doi.org/10.1016/0045-7949(92)90062-5
- Wang, Y.M., Chen, X.F., He, Y.M. and He, Z.J. (2010), "New decoupled wavelet bases for multiresolution structural analysis", Struct. Eng. Mech., 35(2), 175-190. https://doi.org/10.12989/sem.2010.35.2.175
- Warburton, G.B. (1954), "The vibration of rectangular plates", Proceed. Institut. Mech. Eng., 168, 371-385. https://doi.org/10.1243/PIME_PROC_1954_168_040_02
- Washizu, K. (1955), "On the variational principles of elasticity and plasticity", Aeroelasticity and Structures Research Laboratory, Massachusetts Institute of Technology, Technical Report, 25-18.
- Xiang, J.W. and Chen, X.F. (2006), "The construction of plane elastomechanics and Mindlin plate elements of B-spline wavelet on the interval", Finite Elem. Analy. Des., 42, 1269-1280. https://doi.org/10.1016/j.finel.2006.06.006
- Xiang, J.W., Chen, X. and He, Z. (2007), "Static and vibration analysis of thin plates by using finite element method of B-spline wavelet on the interval", Struct. Eng. Mech., 25(5), 613-629. https://doi.org/10.12989/sem.2007.25.5.613
- Xiang, Y., Lai, S.K. and Zhou, L. (2010), "DSC-element method for free vibration analysis of rectangular Mindlin plates", Int. J. Mech. Sci., 52(4), 548-560. https://doi.org/10.1016/j.ijmecsci.2009.12.001
- Zhang, X.W., Chen, X.F., Wang, X.Z. and He, Z.J. (2010), "Multivariable finite elements based on B-spline wavelet on the interval for thin plate static and vibration analysis", Finite Elem. Analys. Des., 46(5), 416-427. https://doi.org/10.1016/j.finel.2010.01.002
- Zienkiewicz, D.L. (1988), "A robust triangular plate bending element of the Reissener-Mindlin type", Int. J. Numer. Meth. Eng., 26, 1169-1184. https://doi.org/10.1002/nme.1620260511
- Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2005), The Finite Element Method, Heinemann, Butterworth.
Cited by
- Hermitian Mindlin Plate Wavelet Finite Element Method for Load Identification vol.2016, 2016, https://doi.org/10.1155/2016/8618202
- Multivariable wavelet finite element-based vibration model for quantitative crack identification by using particle swarm optimization vol.375, 2016, https://doi.org/10.1016/j.jsv.2016.04.018
- Load identification in one dimensional structure based on hybrid finite element method vol.60, pp.4, 2017, https://doi.org/10.1007/s11431-016-0507-5
- Analysis of shallow hyperbolic shell by different kinds of wavelet elements based on B-spline wavelet on the interval vol.40, pp.3, 2016, https://doi.org/10.1016/j.apm.2015.09.036
- A Stochastic Wavelet Finite Element Method for 1D and 2D Structures Analysis vol.2014, 2014, https://doi.org/10.1155/2014/104347
- Hermitian plane wavelet finite element method: Wave propagation and load identification vol.72, pp.12, 2016, https://doi.org/10.1016/j.camwa.2016.10.019
- High-frequency vibration analysis of thin plate based on wavelet-based FEM using B-spline wavelet on interval vol.60, pp.5, 2017, https://doi.org/10.1007/s11431-016-0140-1
- Multivariable wavelet finite element for flexible skew thin plate analysis vol.57, pp.8, 2014, https://doi.org/10.1007/s11431-014-5573-6
- Analysis of Laminated Plates and Shells Using B-Spline Wavelet on Interval Finite Element vol.17, pp.06, 2017, https://doi.org/10.1142/S0219455417500626
- Wavelet Finite Element Method Analysis of Bending Plate Based on Hermite Interpolation vol.389, pp.1662-7482, 2013, https://doi.org/10.4028/www.scientific.net/AMM.389.267
- Static and dynamic analysis of cylindrical shell by different kinds of B-spline wavelet finite elements on the interval vol.36, pp.4, 2011, https://doi.org/10.1007/s00366-019-00804-2