DOI QR코드

DOI QR Code

Analytic solution for the interaction between a viscoelastic Bernoulli-Navier beam and a winkler medium

  • Received : 2010.03.29
  • Accepted : 2011.01.15
  • Published : 2011.06.10

Abstract

This paper deals with the problem of the determination of the response of a viscoelastic Bernoulli-Navier beam, which is resting on an elastic medium. Assuming uniaxial bending, the displacement of the beam axis is governed by an integro-differential equation. The compatibility of the displacements between the beam and the elastic medium is imposed through an integral equation. In general and in particular in the case of a Boussinesq medium, the solution has to be pursued numerically. On the contrary, in the case of a Winkler's medium the compatibility equation becomes a linear finite relationship, which allows finding an original analytical solution of the problem for both hereditary and aging behavior of the beam. Some numerical examples complete the paper, in which a comparison is made between the hereditary and the aging model for the creep of the beam.

Keywords

References

  1. American Concrete Institute - ACI (1992), "Prediction of creep, shrinkage and temperature effects in concrete structures", Report no. 209R-92, Detroit (MI).
  2. Aroutiounian, N.K. (1957), Application de la Theorie du Fluage, Eyrolles, Paris, France. (in French)
  3. Avramidis, I.E. and Morfidis, K. (2006), "Bending of beams on three-parameters elastic foundation", Int. J. Solids Struct., 43, 357-375. https://doi.org/10.1016/j.ijsolstr.2005.03.033
  4. Bazant, Z.P. (1972), "Prediction of concrete creep using age-adjusted-effective-modulus-method", ACI J., 69(4).
  5. Bazant, Z.P. (1988), Mathematical Modeling of Creep and Shrinkage of Concrete, John Wiley & Sons, New York.
  6. Bazant, Z.P. and Chern, J.C. (1985), "Triple power law for concrete creep", J. Eng. Mech., 111(1), 63-83. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:1(63)
  7. Bazant, Z.P. and Panula, L. (1978), "Basic creep", Mater. Struct., 85(11), 317-328.
  8. Boussinesq, J. (1878), "Equilibre d'elasticite d'un sol isotrope sans pesanteur supportant differents poids", Comptes Rendus, 86, 1260-1263. (in French)
  9. Bowles, J.E. (1982), Foundation Analysis and Design, 3rd edition, Mc-Graw Hill, New York.
  10. CEB-Comite Eurointernational du Beton (1984), CEB Design Manual on Structural Effects of Time Dependent Behavior of Concrete. CEB Bull. n. 142, Georgi Publishing Co., Saint Saphorin, Switzerland.
  11. CEB-Comite Eurointernational du Beton (1993), CEB-FIP Model Code 1990. CEB Bull. n, 213/214, Thomas Telford, London (UK).
  12. Clough, R.W. and Penzien, J. (1982) Dynamics of Structures, 3rd edition, Mc Graw Hill, New York.
  13. Creus, G.J. (1985), Viscoelasticity - Basic Theory and Applications to Concrete Structures, Lectures Notes in Engineering 16, Springer Verlag, Berlin, Germany.
  14. Elfesoufy, Z. and Azrar, L. (2005), "Buckling, flutter and vibration analyses of beams by integral equation formulations", Comput. Struct., 83, 2632-2649. https://doi.org/10.1016/j.compstruc.2005.04.001
  15. Flamant, A. (1892), "Sur la repartition des pressions dans un solide rectangulaire charge transversale-ment", Comptes Rendus, 114, 1465-1468. (in French)
  16. Freudenthal, A.M. and Lorsh, H.G. (1957), "The infinite elastic beam on a linear viscoelastic foundation", J. Eng. Mech. Div., 83(1), 1158.
  17. Gorman, D.J. (2008), "On use of the Dirac delta function in the vibration analysis of elastic structures", Int. J. Solids Struct., 45, 4605-4614. https://doi.org/10.1016/j.ijsolstr.2008.03.009
  18. Kargarnovin, M.H., Younesian, D., Thompson, D.J. and Jonesc, J.C. (2005), "Response of beams on nonlinear viscoelastic foundations to harmonic moving loads", Comput. Struct., 83, 1865-1877. https://doi.org/10.1016/j.compstruc.2005.03.003
  19. Kerr, A.D. (1964), "Elastic and viscoelastic foundation models", J. Appl. Mech., 31, 491-498. https://doi.org/10.1115/1.3629667
  20. Kerr, A.D. (1985), "On the determination of foundation model parameters", J. Geotech. Eng., 111(11), 1334-1340. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:11(1334)
  21. Kim, S.M. and Cho, Y.H. (2006), "Vibration and dynamic buckling of shear beam-columns on elastic foundation under moving harmonic loads", Int. J. Solids Struct., 43, 393-412. https://doi.org/10.1016/j.ijsolstr.2005.06.025
  22. Kuczma, M.S. and Demkowicz, L. (1992), "An adaptive algorithm for unilateral viscoelastic contact problems for beams and plates", Comp. Meth. Appl.Mech. Eng., 101, 183-196. https://doi.org/10.1016/0045-7825(92)90021-B
  23. Kuczma, M.S. and witka, R. (1990), "Bending of elastic beams on Winkler-type viscoelastic foundation with unilateral constraints", Comput. Struct., 34(1), 125-136. https://doi.org/10.1016/0045-7949(90)90306-M
  24. Lancioni, G. and Lenci, S. (2010), "Dynamics of a semi-infinite beam on unilateral springs: Touch-down points motion and detached bubbles propagation", Int. J. Nonlin. Mech., 45, 876-887. https://doi.org/10.1016/j.ijnonlinmec.2009.11.015
  25. Lee, E.H. and Radok, I.R. (1960), "The contact problem for viscoelastic bodies", J. Appl. Mech., 27, 438-444. https://doi.org/10.1115/1.3644020
  26. Mola, F. (1982), "Applicazioni del metodo delle funzioni di rilassamento ridotte all'analisi di strutture viscoelastiche non omogenee", Studi e Ricerche n. 4, Corso di Perfezionamento per le Costruzioni in Cemento Armato Fratelli Pesenti, Tamburini, Milano, 211-235. (in Italian)
  27. Morfidis, K. (2010), "Vibration of Timoshenko beams on three-parameter elastic foundation", Comput. Struct., 88, 294-308. https://doi.org/10.1016/j.compstruc.2009.11.001
  28. Morfidis, K. and Avramidis, I.E. (2002), "Formulation of a generalized beam element on a two-parameter elastic foundation with semi-rigid connections and rigid offsets", Comput. Struct., 80, 1919-1934. https://doi.org/10.1016/S0045-7949(02)00226-2
  29. Muscolino, G. and Palmeri, A. (2007), "Response of beams resting on viscoelastically damped foundation to moving oscillators", Int. J. Solids Struct., 44, 1317-1336. https://doi.org/10.1016/j.ijsolstr.2006.06.013
  30. Nobili, A. and Tarantino, A.M. (2005), "Unilateral contact problem for aging viscoelastic beams", J. Eng. Mech., 131(12), 1229-1238. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:12(1229)
  31. Nowacki, W. (1970), Theorie du Fluage, Eyrolles, Paris, France. (in French)
  32. Pasternak, P.L. (1954), "On a new method of analysis of an elastic foundation by means of two foundation constants", Gosudarstvennoe Izdatelstro Liberaturi po Stroitelstvui Arkhitekture, Moscow. (in Russian)
  33. Pister, K.S. and Williams, M.L. (1960), "Bending of plates on a viscoelastic foundation", J. Eng. Mech. Div., 86, 31-44.
  34. Raymondi, C. (1959), Atti dell'Istituto di Scienza delle Costruzioni dell'Universita di Pisa, Vol. III n. 57, n. 60, n. 65. (in Italian)
  35. Reissner, E. (1958), "Deflection of plates on viscoelastic foundation", J. Appl. Mech., 25, 144-145.
  36. Sun, L. (2001), "A closed-form solution of a Bernoulli-Euler beam on a viscoelastic foundation under harmonic line loads", J. Sound Vib., 242(4), 619-627. https://doi.org/10.1006/jsvi.2000.3376
  37. Sun, L. (2007), "Steady-state dynamic response of a Kirchhoff's slab on viscoelastic foundation to moving harmonic loads", J. Appl. Mech., 74, 1212-1224. https://doi.org/10.1115/1.2744033
  38. Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, Mc Graw Hill, New York.
  39. Winkler, E. (1867), Die Lehre von der Elasticität und Festigkeit, Dominicus, Prague, Czech Rep. (in German)

Cited by

  1. Oscillations of a string on an elastic foundation with space and time-varying rigidity vol.88, pp.1, 2017, https://doi.org/10.1007/s11071-016-3261-8