DOI QR코드

DOI QR Code

Fatigue life prediction of multiple site damage based on probabilistic equivalent initial flaw model

  • Kim, JungHoon (Department of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Zi, Goangseup (Department of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Van, Son-Nguyen (Department of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Jeong, MinChul (Department of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Kong, JungSik (Department of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Kim, Minsung (Aerospace Technology Department (7-2), Agency for Defense Development)
  • Received : 2010.04.23
  • Accepted : 2011.02.22
  • Published : 2011.05.25

Abstract

The loss of strength in a structure as a result of cyclic loads over a period of life time is an important phenomenon for the life-cycle analysis. Service loads are accentuated at the areas of stress concentration, mainly at the connection of components. Structural components unavoidably are affected by defects such as surface scratches, surface roughness and weld defects of random sizes, which usually occur during the manufacturing and handling process. These defects are shown to have an important effect on the fatigue life of the structural components by promoting crack initiation sites. The value of equivalent initial flaw size (EIFS) is calculated by using the back extrapolation technique and the Paris law of fatigue crack growth from results of fatigue tests. We try to analyze the effect of EIFS distribution in a multiple site damage (MSD) specimen by using the extended finite element method (XFEM). For the analysis, fatigue tests were conducted on the centrally-cracked specimens and MSD specimens.

Keywords

References

  1. Amanullah, M., Siddiqui, N.A., Umar, A. and Abbas, H. (2002), "Fatigue reliability analysis of welded joints of a TLP tether system", Steel Compos. Struct., 2(5), 331-354. https://doi.org/10.12989/scs.2002.2.5.331
  2. An, D., Choi, J.H., Kim, N.H. and Pattabhiraman, S. (2011), "Fatigue life prediction based on Bayesian approach to incorporate field data into probability model", Struct. Eng. Mech., 37(4), 427-442. https://doi.org/10.12989/sem.2011.37.4.427
  3. Artley, M.E. (1989), Probabilistic Damage Tolerance Method for Metallic Aerospace Structure, Wright Research and Development Center, Wright-Patterson AFB, OH.
  4. Belytschko, T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Meth. Eng., 45, 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  5. Belytschko, T., Chen, H., Xu, J. and Zi, G. (2003), "Dynamic crack propagation based on loss of hyperbolicity with a new discontinuous enrichment", Int. J. Numer. Meth. Eng., 58, 1873-1905. https://doi.org/10.1002/nme.941
  6. Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205
  7. Belytschko, T., Moës, N., Usui, S. and Parimi, C. (2001), "Arbitrary discontinuities in finite elements", Int. J. Numer. Meth. Eng., 50, 993-1013. https://doi.org/10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
  8. Chou, K.C., Cox, G.C. and Lockwood, A.M. (2004), "Crack growth life model for fatigue susceptible structural components in aging aircraft", Struct. Eng. Mech., 17(1), 29-50. https://doi.org/10.12989/sem.2004.17.1.029
  9. Daux, C., Moës, N., Dolbow, J., Sukumar, N. and Belytschko, T. (2000), "Arbitrary branched and intersecting cracks with the extended finite element method", Int. J. Numer. Meth. Eng., 48, 1741-1760. https://doi.org/10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
  10. Dolbow, J., Moës, N. and Belytschko, T. (2000), "An extended finite element method for modelling crack growth with friction contact", Comput. Meth. Appl. Mech. Eng., 190, 6825-6846.
  11. Forth, S.C., Everett, R.A. and Newman, J.A. (2002), "A novel approach to rotorcraft damage Tolerance", Proceedings of the 6th Joint FAA/DoD/NASA Aging Aircraft Conference, San Francisco, September.
  12. Gallagher, J.P., Giessler, F.J., Berens, A.P. and Eagle, R.M. (1984), USAF Damage Tolerant Design Handbook: Guidelines for the Analysis and Design of Damage Tolerant Aircraft Structures, Flight Dynamics Laboratory, Ohio.
  13. Huang, X.P., Moan, T. and Weicheng, C. (2007), "An engineering model of fatigue crack growth under variable amplitude loading", Int. J. Fatigue., 30, 2-10.
  14. JSSG-2006 (1998), Joint Service Specification Guide, Aircraft Structures, United States of America: Department of Defense.
  15. Kim, Y.R., Baek, C., Underwood, B.S., Subramanian, V., Guddati, M.N. and Lee, K. (2008), "Application of viscoelastic continuum damage model based finite element analysis to predict the fatigue performance of asphalt pavements", KSCE J. Civil Eng., 12(2), 109-120. https://doi.org/10.1007/s12205-008-0109-x
  16. Koolloos, M.F.J., de Castro, P.M.S.T., Esposito, R. and Cavallini, G. (2003), Fatigue Testing of Single-rivet Lap Joint Specimens, Technical Report ADMIRE-TR-3.1-06-3.1/NLRCR-2003-281.
  17. Krasnowski, B.R., Rotenberger, K.M. and Spence, W.W. (1991), "A damage-tolerance method for helicopter dynamic components", J. Am. Helicopter Soc., 36(2), 52-60. https://doi.org/10.4050/JAHS.36.52
  18. Liu, Y. and Mahadovan, S. (2009), "Probabilistic fatigue life prediction using an equivalent initial flaw size distribution", Int. J. Fatigue., 476-487.
  19. Merati, A. and Eastaugh, G. (2007), "Determination of fatigue related discontinuity state of 7000 series of aerospace aluminum alloys", Eng. Fail. Anal., 14(4), 673-685. https://doi.org/10.1016/j.engfailanal.2006.02.016
  20. Molent, L., Sun, Q. and Green, A. (2006) "Charcterisation of equivalent initial flaw sizes in 7050 aluminium alloy", J. Fatigue Fract. Eng. Mater. Struct., 29, 916-937. https://doi.org/10.1111/j.1460-2695.2006.01050.x
  21. Moran, B. and Shih, C. (1987), "Crack tip and associated domain integrals from momentum and energy balance", Eng. Fract. Mech., 27, 615-642. https://doi.org/10.1016/0013-7944(87)90155-X
  22. Moreira, P.M.G.P., de Matos, P.F.P., Caamanho, P.P., Pastrama, S.D. and de Castro, P.M.S.T. (2007), "Stress intensity factor and load transfer analysis of a cracked riveted lap joint", Mater. Des., 28, 1263-1270. https://doi.org/10.1016/j.matdes.2005.12.014
  23. Moreira, P.M.G.P., de Matos, P.F.P., de Castro, P.M.S.T. (2005), "Fatigue striation spacing and equivalent initial flaw size in Al 2024-T3 riveted specimens", Theor. Appl. Fract. Mech., 43(1), 89-99. https://doi.org/10.1016/j.tafmec.2004.12.005
  24. Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46, 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  25. Rohrbaugh, S.M., Ruff, D., Hillberry, B.M. and McCabe, G.(1994), "A probabilistic fatigue analysis of multiple site damage", FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, Part 2, 635-651.
  26. Rudd, J.L. and Gray, T.D. (1978), "Quantification of fastener-hole quality", J Aircraft, 15(3), 143-147. https://doi.org/10.2514/3.58332
  27. Sukumar, N., Moës, N., Moran, B. and Belytschko, T. (2000), "Extended finite element method for threedimensional crack modeling", Int. J. Numer. Meth. Eng., 48, 1549-1570. https://doi.org/10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A
  28. Tada, H., Paris, P.C. and Irwin, G.R. (2000), The Stress Analysis of Cracks Handbook, 3rd edition, ASME Press.
  29. Tong, Y.C. (2001), Literature Review on Aircraft Structural Risk and Reliability Analysis, DSTO Aeronautical and Maritime Research Laboratory, Melbourne, Australia, Report Number DSTO-TR-1100.
  30. Ventura, G., Budyn, E. and Belytschko, T. (2003), "Vector level set for description of propagating cracks in finite elements", Int. J. Numer. Meth. Eng., 58, 1571-1592. https://doi.org/10.1002/nme.829
  31. Ventura, G., Xu, J.X. and Belytschko, T. (2002), "A vector level set method and new discontinuity approximations for crack growth by EFG", Int. J. Numer. Meth. Eng., 54, 923-944. https://doi.org/10.1002/nme.471
  32. Volk, M., Fajdiga, M. and Nagode, M. (2009), "Load spectra growth modelling and Extrapolation with REBMIX", Struct. Eng. Mech., 33(5), 589-604. https://doi.org/10.12989/sem.2009.33.5.589
  33. White, P., Molent, L. and Barter, S. (2005), "Interpreting fatigue test results using a probabilistic fracture approach", Int. J. Fatig., 27(7), 752-767. https://doi.org/10.1016/j.ijfatigue.2005.01.006
  34. Yang, J.N. and Manning, S.D. (1980), "Statistical distribtuion of equivalent initial flaw size", Proceedings of the 1980 Annual Reliability and Maintainability Symposium, 112-120.
  35. Yau, J., Wang, S. and Corten, H. (1980), "A mixed-mode crack analysis of isotropic solids using conservation laws of Elasticity", J. Appl. Mech., 47, 335-341. https://doi.org/10.1115/1.3153665
  36. Zi, G. and Belytschko, T. (2003), "New crack-tip elements for XFEM and applications to cohesive cracks", Int. J. Numer. Meth. Eng., 57(15), 2221-2240. https://doi.org/10.1002/nme.849
  37. Zi, G., Song, J.H., Budyn, E., Lee, S.H. and Belytschko, T. (2004), "A method for growing multiple cracks without remeshing and its application to fatigue crack growth", Model. Simul. Mater. Sci. Eng., 12(5), 901-915. https://doi.org/10.1088/0965-0393/12/5/009

Cited by

  1. Fatigue and fracture life-cycle cost assessment of a Miter gate with multiple cracks vol.83, 2018, https://doi.org/10.1016/j.engfailanal.2017.09.008
  2. A Study on the Modeling of PoF Estimation for Probabilistic Risk Assessment based on Bayesian Method vol.41, pp.8, 2013, https://doi.org/10.5139/JKSAS.2013.41.8.619
  3. Surface crack analysis under cyclic loads using probabilistic S-version finite element model vol.37, pp.6, 2015, https://doi.org/10.1007/s40430-015-0416-3
  4. A probabilistic analysis of Miner's law for different loading conditions vol.60, pp.1, 2016, https://doi.org/10.12989/sem.2016.60.1.071
  5. An investigation into the effects of voids, inclusions and minor cracks on major crack propagation by using XFEM vol.49, pp.5, 2014, https://doi.org/10.12989/sem.2014.49.5.597
  6. Probabilistic fatigue integrity assessment in multiple crack growth analysis associated with equivalent initial flaw and material variability vol.156, 2016, https://doi.org/10.1016/j.engfracmech.2016.02.018
  7. Fatigue life prediction methodology using entropy index of stress interaction and crack severity index of effective stress vol.22, pp.3, 2013, https://doi.org/10.1177/1056789512448803
  8. XFEM analysis of the effects of voids, inclusions and other cracks on the dynamic stress intensity factor of a major crack vol.37, pp.8, 2014, https://doi.org/10.1111/ffe.12150
  9. Study on dynamic interaction between crack and inclusion or void by using XFEM vol.63, pp.3, 2017, https://doi.org/10.12989/sem.2017.63.3.329
  10. SOME ASPECTS OF INFLUENCE EXERTED BY LARGE-SCALE EFFECT NATURE AT CYCLIC TESTS ON OPERATION AND RELIABILITY OF ALUMINUM ALLOY PRODUCTS vol.2018, pp.5, 2011, https://doi.org/10.17073/0021-3438-2018-5-56-65
  11. Fatigue Life Prediction of Rivet Joints vol.19, pp.6, 2011, https://doi.org/10.1007/s11668-019-00788-7