References
- Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall Inc.
- Belytschko, T. and Hughes, T.J.R. (1983), "Computational methods for transient analysis", Comput. Method. Mech., 1, Northhooland Elsevier, Amsterdam.
- Caglar, N. and Caglar, H. (2006a), "B-spline solution of singular boundary value problems", Appl. Math. Comput., 182, 1509-1513. https://doi.org/10.1016/j.amc.2006.05.035
- Caglar, H., Caglar, N. and Elfaituri, K. (2006b), "B-spline interpolation compared with finite difference, finite element and finite volume methods which applied to two-point boundary value problems", Appl. Math. Comput., 175, 72-79. https://doi.org/10.1016/j.amc.2005.07.019
- Caglar, N. and Caglar, H. (2009), "B-spline method for solving linear system of second-order boundary value problems", Comput. Math. Appl., 57, 757-762. https://doi.org/10.1016/j.camwa.2008.09.033
- Chang, S.Y. (1997), "Improved numerical dissipation for explicit methods in pseudo-dynamic tests", Earthq. Eng. Struct. D., 26, 917-929. https://doi.org/10.1002/(SICI)1096-9845(199709)26:9<917::AID-EQE685>3.0.CO;2-9
- Chang, S.Y. (2002), "Explicit pseudo-dynamic algorithm with unconditional stability", J. Eng. Mech.-ASCE, 9, 128, 935-947.
- Chang, S.Y. (2010), "A new family of explicit methods for linear structural dynamics", Comput. Struct., 88, 755-772. https://doi.org/10.1016/j.compstruc.2010.03.002
- Chopra, A.K. (1995), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice Hall Inc., Englewood Cliffs, NJ.
- Chung, J. and Lee, J.M. (1994), "A new family of explicit time integration methods for linear and non-linear structural dynamics", Int. J. Numer. Meth. Eng., 37, 3961-3976. https://doi.org/10.1002/nme.1620372303
- De Boor, C. (1978), A Practical Guide to Splines, Springer-Verlag, New York.
- Dokainish, M.A. and Subbaraj, K. (1989), "A survey of direct time integration methods in computational structural dynamics. I. Explicit methods", Comput. Struct., 32(6), 1371-1386. https://doi.org/10.1016/0045-7949(89)90314-3
- Ebeling, R.M., Green, R.A. and French, S.E. (1997), "Accuracy of response of single-degree-of-freedom systems to ground motion", Technical Report ITL-97-7, U.S. Army Corps of Engineers.
- Hilber, H.M., Hughes, T.J.R. and Taylor, R.L. (1977), "Improved numerical dissipation for time integration algorithms in structural dynamics", Int. J. Earthq. Eng. Struct. D., 5, 283-292. https://doi.org/10.1002/eqe.4290050306
- Houbolt, J.C. (1950), "A recurrence matrix solution for the dynamic response of elastic aircraft", J. Aeronaut Sciences, 17, 540-550. https://doi.org/10.2514/8.1722
- Hughes, T.J.R. (1987), The Finite Element Method-linear Static and Dynamic Finite Element Analysis, Prentice Hall Inc.
- Inoue, T. and Sueoka, A. (2002), "A step-by-step integration scheme utilizing the cardinal B-splines", JSME Int. J. Series C, 45(2), 433-441. https://doi.org/10.1299/jsmec.45.433
- Xiang, J., He, Z., He, Y. and Chen, X. (2007), "Static and vibration analysis of thin plates by using finite element method of B-spline wavelet on the interval", Struct. Eng. Mech., 25(5), 613-629. https://doi.org/10.12989/sem.2007.25.5.613
- Liu, J.L. (2002), "Solution of dynamic response of framed structure using pricewise Birkhoff polynomial", J. Sound Vib., 251(5), 847-857. https://doi.org/10.1006/jsvi.2001.4014
- Liu, J.L. (2001), "Solution of dynamic response of SDOF system using pricewise Lagrange polynomial", Int. J. Earthq. Eng. Struct. D, 30, 613-619. https://doi.org/10.1002/eqe.24
- Mullen, R. and Belytschko, T. (1983), "An analysis of an unconditionally stable explicit method", Comput. Struct., 16(6), 691-696. https://doi.org/10.1016/0045-7949(83)90060-3
- Newmark, N.M. (1959), "A method of computational for structural dynamics", J. Eng. Mech. Div., 8, 67-94.
- Park, K.C. (1975), "An improved stiffly stable method for direct integration of nonlinear structural dynamic equations", J. Appl. Mech., 42, 464-470. https://doi.org/10.1115/1.3423600
- Rio, G., Soive, A. and Grolleau, V. (2005), "Comparative study of numerical explicit time integration algorithms", Adv. Eng. Softw., 36, 252-265. https://doi.org/10.1016/j.advengsoft.2004.10.011
- Rogers, D.F. (2001), An Introduction to NURBS, with Historical Perspective, Morgan Kaufmann Publishers, San Fransisco.
- Wilson, E.L., Farhoomand, I. and Bathe, K.J. (1973), "Nonlinear dynamics analysis of complex structures", Int. J. Earthq. Eng. Struct. D., 1, 241-252.
- Yingkang, H. and Xiang, M.Y. (1995), "Discrete modulus of smoothness of spline with equally spaced knots", SIAM Rev., 32(5), 1428-1435.
Cited by
- A Family of Cubic B-Spline Direct Integration Algorithms with Controllable Numerical Dissipation and Dispersion for Structural Dynamics 2018, https://doi.org/10.1007/s40996-017-0083-y
- An unconditionally stable implicit time integration algorithm: Modified quartic B-spline method vol.153, 2015, https://doi.org/10.1016/j.compstruc.2015.02.030
- Alpha-Modification of Cubic B-Spline Direct Time Integration Method vol.17, pp.10, 2017, https://doi.org/10.1142/S0219455417501188
- Development of a direct time integration method based on Bezier curve and 5th-order Bernstein basis function vol.194, 2018, https://doi.org/10.1016/j.compstruc.2017.08.015
- Insight into an implicit time integration method based on Bezier curve and third-order Bernstein basis function for structural dynamics 2017, https://doi.org/10.1007/s42107-017-0001-4
- An explicit time integration method for structural dynamics using cubic -spline polynomial functions vol.20, pp.1, 2011, https://doi.org/10.1016/j.scient.2012.12.003
- Development of a Direct Time Integration Method Based on Quartic B-spline Collocation Method vol.43, pp.suppl1, 2019, https://doi.org/10.1007/s40996-018-0193-1
- Further Insights Into Time-Integration Method Based on Bernstein Polynomials and Bezier Curve for Structural Dynamics vol.19, pp.10, 2019, https://doi.org/10.1142/s021945541950113x
- An effective locally-defined time marching procedure for structural dynamics vol.73, pp.1, 2011, https://doi.org/10.12989/sem.2020.73.1.065
- Survey of cubic B-spline implicit time integration method in computational wave propagation vol.79, pp.4, 2011, https://doi.org/10.12989/sem.2021.79.4.473