DOI QR코드

DOI QR Code

Exact dynamic stiffness matrix for a thin-walled beam-column of doubly asymmetric cross-section

  • Shirmohammadzade, A. (Sahand University of Technology) ;
  • Rafezy, B. (Sahand University of Technology) ;
  • Howson, W.P. (Cardiff School of Engineering, Cardiff University)
  • Received : 2010.02.08
  • Accepted : 2010.12.09
  • Published : 2011.04.25

Abstract

Bernoulli-Euler beam theory is used to develop an exact dynamic stiffness matrix for the flexural-torsional coupled motion of a three-dimensional, axially loaded, thin-walled beam of doubly asymmetric cross-section. This is achieved through solution of the differential equations governing the motion of the beam including warping stiffness. The uniform distribution of mass in the member is also accounted for exactly, thus necessitating the solution of a transcendental eigenvalue problem. This is accomplished using the Wittrick-Williams algorithm. Finally, examples are given to confirm the accuracy of the theory presented, together with an assessment of the effects of axial load and loading eccentricity.

Keywords

References

  1. Banerjee, J.R. (1989), "Coupled bending torsional dynamic stiffness matrix for beam elements", Int. J. Numer. Meth. Eng., 28(6), 1283-1298. https://doi.org/10.1002/nme.1620280605
  2. Banerjee, J.R., Guo, S. and Howson, W.P. (1996), "Exact dynamic stiffness matrix of a bending-torsion coupled beam including warping", Comput. Struct., 59(4), 613-621. https://doi.org/10.1016/0045-7949(95)00307-X
  3. Banerjee, J.R. and Williams, F.W. (1992), "Coupled bending-torsional dynamic stiffness matrix for Timoshenko beam elements", Comput. Struct., 42(3), 301-310. https://doi.org/10.1016/0045-7949(92)90026-V
  4. Bishop, R.E.D., Cannon, S.M. and Miao, S. (1989), "On coupled bending and torsional vibration of uniform beams", J. Sound Vib., 131, 457-464. https://doi.org/10.1016/0022-460X(89)91005-5
  5. Dokumaci, E. (1987), "An exact solution for coupled bending and torsion vibrations of uniform beams having single cross-sectional symmetry", J. Sound Vib., 119, 443-449. https://doi.org/10.1016/0022-460X(87)90408-1
  6. Friberg, P.O. (1985), "Beam element matrices derived from Vlasov's theory of open thin-walled elastic beams", Int. J. Numer. Meth. Eng., 21(7), 1205-1228. https://doi.org/10.1002/nme.1620210704
  7. Hallauer, W.L. and Liu, Y.L. (1982), "Beam bending-torsion dynamic stiffness method for calculation of exact vibration modes", J. Sound Vib., 85(1), 105-113. https://doi.org/10.1016/0022-460X(82)90473-4
  8. Howson, W.P. (1979), "A compact method for computing the eigenvalues and eigenvectors of plane frames", Adv. Eng. Softw. Workst., 1(4), 181-190. https://doi.org/10.1016/0141-1195(79)90016-0
  9. Howson, W.P. and Williams, F.W. (1973), "Natural frequencies of frames with axially loaded Timoshenko members", J. Sound Vib., 26(4), 503-515. https://doi.org/10.1016/S0022-460X(73)80216-0
  10. Leung, A.Y.T. (1991), "Natural shape functions of a compressed Vlasov element", Thin Wall. Struct., 11, 431-438. https://doi.org/10.1016/0263-8231(91)90037-J
  11. Li, J., Li, W.Y., Shen, R.Y. and Hua, H.X. (2004a), "Coupled bending and torsional vibration of nonsymmetrical axially loaded thin-walled Bernoulli-Euler beams", Mech. Res. Commun., 31(6), 697-711. https://doi.org/10.1016/j.mechrescom.2004.04.005
  12. Li, J., Shen, R.Y., Hua, H.X. and Jin, X.D. (2004b), "Coupled bending and torsional vibration of axially loaded thin- walled Timoshenko beams", Int. J. Mech. Sci., 46(2), 299-320. https://doi.org/10.1016/j.ijmecsci.2004.02.009
  13. Rafezy, B. and Howson, W.P. (2003), "Natural frequencies of plane sway frames: An overview of two simple models", Proceedings of ICCES 2003: International Conference on Computational and Experimental Engineering and Sciences, Corfu, Greece.
  14. Rafezy, B. and Howson, W.P. (2006a), "Exact dynamic stiffness matrix of a three-dimensional shear beam with doubly asymmetric cross-section", J. Sound Vib., 289, 938-951. https://doi.org/10.1016/j.jsv.2005.02.046
  15. Rafezy, B. and Howson, W.P. (2006b), "Exact dynamic stiffness matrix for a thin-walled beam of doubly asymmetric cross-section filled with shear sensitive material", Int. J. Numer. Meth. Eng., 69(13), 2758-2779.
  16. Rafezy, B. and Howson, W.P. (2008), "Vibration analysis of doubly asymmetric, three-dimensional structures comprising wall and frame assemblies with variable cross-section", J. Sound Vib., 318, 247-266. https://doi.org/10.1016/j.jsv.2008.04.018
  17. Rafezy, B. and Howson, W.P. (2009), "Coupled lateral_torsional frequencies of asymmetric, three-dimensional structures comprising shear-wall and core assemblies with stepwise variable cross-section", Eng. Struct., 31, 1903-1915. https://doi.org/10.1016/j.engstruct.2009.01.024
  18. Rafezy, B., Zare, A. and Howson, W.P. (2007), "Coupled lateral-torsional vibration of proportional asymmetric, three-dimensional frame structures", Int. J. Solids Struct., 44, 128-144. https://doi.org/10.1016/j.ijsolstr.2006.04.019
  19. Tanaka, M. and Bercin, A.N. (1999), "Free vibration solution for uniform beams of nonsymmetrical cross section using Mathematica", Comput. Struct., 71(1), 1-8. https://doi.org/10.1016/S0045-7949(98)00236-3
  20. Williams, F.W. and Wittrick, W.H. (1970), "An automatic computational procedure for calculating natural frequencies of skeletal structures", Int. J. Mech. Sci., 12, 781-791. https://doi.org/10.1016/0020-7403(70)90053-6
  21. Wittrick, W.H. and Williams, F.W. (1971), "A general algorithm for computing natural frequencies of elastic structures", Quart. J. Mech. Appl. Math., 24(3), 263-284. https://doi.org/10.1093/qjmam/24.3.263

Cited by

  1. On triply coupled vibration of eccentrically loaded thin-walled beam using dynamic stiffness matrix method vol.62, pp.6, 2011, https://doi.org/10.12989/sem.2017.62.6.759