DOI QR코드

DOI QR Code

Nonlinear modeling of shear strength of SFRC beams using linear genetic programming

  • Gandomi, A.H. (Department of Civil Engineering, The University of Akron) ;
  • Alavi, A.H. (School of Civil Engineering, Iran University of Science and Technology) ;
  • Yun, G.J. (Department of Civil Engineering, The University of Akron)
  • 투고 : 2010.07.03
  • 심사 : 2010.11.18
  • 발행 : 2011.04.10

초록

A new nonlinear model was developed to evaluate the shear resistance of steel fiber-reinforced concrete beams (SFRCB) using linear genetic programming (LGP). The proposed model relates the shear strength to the geometrical and mechanical properties of SFRCB. The best model was selected after developing and controlling several models with different combinations of the influencing parameters. The models were developed using a comprehensive database containing 213 test results of SFRC beams without stirrups obtained through an extensive literature review. The database includes experimental results for normal and high-strength concrete beams. To verify the applicability of the proposed model, it was employed to estimate the shear strength of a part of test results that were not included in the modeling process. The external validation of the model was further verified using several statistical criteria recommended by researchers. The contributions of the parameters affecting the shear strength were evaluated through a sensitivity analysis. The results indicate that the LGP model gives precise estimates of the shear strength of SFRCB. The prediction performance of the model is significantly better than several solutions found in the literature. The LGP-based design equation is remarkably straightforward and useful for pre-design applications.

키워드

참고문헌

  1. ACI Committee 544 (1988), "Design considerations for steel fiber-reinforced concrete", ACI Struct. J., 85(5), 563-580.
  2. Adebar, P., Mindess, S.S., Pierre, D. and Olund, B. (1997), "Shear tests of fiber concrete beams without stirrups", ACI Struct. J., 94(1), 68-76.
  3. Adhikary, B.B. and Mutsuyoshi, H. (2006), "Prediction of shear strength of steel fiber RC beams using neural networks", Constr. Build. Mater., 20, 801-811. https://doi.org/10.1016/j.conbuildmat.2005.01.047
  4. Alavi, A.H., Gandomi, A.H. and Heshmati, A.A.R. (2010b), "Discussion on soft computing approach for realtime estimation of missing wave heights", Ocean Eng., 37(13), 1239-1240. https://doi.org/10.1016/j.oceaneng.2010.06.003
  5. Alavi, A.H. and Gandomi, A.H. (2011), "A robust data mining approach for formulation of geotechnical engineering systems", Int. J. Comput. Aid. Meth. Eng.-Eng. Computat., 28(3).
  6. Alavi, A.H., Gandomi, A.H., Sahab, M.G. and Gandomi, M. (2010a), "Multi expression programming: a new approach to formulation of soil classification", Eng. Comput-Germany, 26(2), 111-118.
  7. Ashour, S.A., Hasanain, G.S. and Wafa, F.F. (1992), "Shear behavior of high-strength fiber reinforced concrete beams", ACI Struct. J., 89(2), 176-184.
  8. Back, T. (1996), Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms, Oxford University Press, USA.
  9. Banzhaf, W., Nordin, P., Keller, R. and Francone, F. (1998), Genetic Programming-an Introduction, On the Automatic Evolution of Computer Programs and Its Application, Dpunkt/Morgan Kaufmann, Heidelberg/San Francisco.
  10. Batson, G., Jenkins, E. and Spatney, R. (1972), "Steel fibers as shear reinforcement in beams", ACI J., 69(10), 640-644.
  11. Baykasoglu, A., Gullub, H., Canakc , H. and Ozbak r, L. (2008), "Prediction of compressive and tensile strength of limestone via genetic programming", Expert Syst. Appl., 35(1-2), 111-123. https://doi.org/10.1016/j.eswa.2007.06.006
  12. Brameier, M. and Banzhaf, W. (2001), "A comparison of linear genetic programming and neural networks in medical data mining", IEEE T. Evolut. Comput., 5(1), 17-26. https://doi.org/10.1109/4235.910462
  13. Brameier, M. and Banzhaf, W. (2007), Linear Genetic Programming, Springer Science + Business Media, New York.
  14. Casanova, P. and Rossi, P. (1999), "High-strength concrete beams submitted to shear: steel fibers versus stirrups", Structural Applications of Fiber Reinforced Concrete, SP-182, (Eds. N. Banthia, C. MacDonald and P. Tatnall), American Concrete Institute, Farmington Hills, Mich., 53-67.
  15. Chanh, V.N. (2004), "Steel fiber-reinforced concrete", Faculty of Civil Engineering Ho chiminh City University of Technology, Seminar Material, 108-116.
  16. Conrads, M., Dolezal, O., Francone, F.D. and Nordin, P. (2004), "Discipulus $Lite^{TM}$-fast genetic programming based on AIM learning technology", Register Machine Learning Technologies Inc., Littleton, CO.
  17. Cucchiara, C., Mendola, L.L. and Papia, M. (2004), "Effectiveness of stirrups and steel fibres as shear reinforcement", Cement Concrete Comp., 26, 777-786. https://doi.org/10.1016/j.cemconcomp.2003.07.001
  18. Deschaine, L.M. (2000), "Using genetic programming to develop a C/C++ simulation model of a waste incinerator science applications", Draft Technical Report, International Corp.
  19. Francone, F. (2000), $Discipulus^{TM}$ Owner's Manual, Version 3.0. Register Machine Learning Technologies, Littleton, CO.
  20. Francone, F.D. and Deschaine, L.M. (2004), "Extending the boundaries of design optimization by integrating fast optimization techniques with machine-code-based, linear genetic programming", Inform. Sciences, 161, 99-120. https://doi.org/10.1016/j.ins.2003.05.006
  21. Frank, I.E. and Todeschini, R. (1994), The Data Analysis Handbook, Elsevier, Amsterdam, The Nederland.
  22. Gandomi, A.H., Alavi, A.H. and Sahab, M.G. (2010b), "New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming", Mater. Struct., 43(7), 963-983. https://doi.org/10.1617/s11527-009-9559-y
  23. Gandomi, A.H., Alavi, A.H., Sahab, M.G. and Arjmandi, P. (2010c), "Formulation of elastic modulus of concrete using linear genetic programming", J. Mech. Sci. Technol., 24(6), 1273-1278. https://doi.org/10.1007/s12206-010-0330-7
  24. Gandomi, A.H., Alavi, A.H. and Yun, G. (2010a), "Formulation of uplift capacity of suction caissons using multi expression programming", KSCE J. Civil Eng., 15(2), 363-373. https://doi.org/10.1007/s12205-011-1117-9
  25. Gencoglu, M. (2007), "The effects of stirrups and the extents of regions used sfrc in exterior beam-column joints", Struct. Eng. Mech., 27(2), 223-241. https://doi.org/10.12989/sem.2007.27.2.223
  26. Golbraikh, A. and Tropsha, A. (2002), "Beware of q2", J. Mol. Graph. Model., 20(4), 269-276. https://doi.org/10.1016/S1093-3263(01)00123-1
  27. Guven, A., Azamathullab, H.M. and Zakaria, N.A. (2009), "Linear genetic programming for prediction of circular pile scour", Ocean Eng., 36(12-13), 985-991. https://doi.org/10.1016/j.oceaneng.2009.05.010
  28. Imam, M., Vandewalle, L. and Mortelmans, F. (1994), "Shear capacity of steel fiber high-strength concrete beams", High-Performance Concrete, SP-149, (Ed. V.M. Malhotra), American Concrete Institute, Farmington Hills, Mich., 227-241.
  29. Jindal, R.L. (1984), "Shear and moment capacities of steel fiber reinforced concrete beams", Fiber Reinforced Concrete, SP-81, (Ed. G.C. Hoff), American Concrete Institute, Farmington Hills, Mich., 1-16.
  30. Johari, A., Habibagahi, G. and Ghahramani, A. (2006), "Prediction of soil-water characteristic curve using genetic programming", J. Geotech. Geoenviron., 132(5), 661-665. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(661)
  31. Kadir, M.R.A. and Saeed, J.A. (1986), "Shear strength of fibre reinforced concrete beams", J. Eng. Technol., 4(3), 98-112.
  32. Kaushik, S.K., Gupta, V.K. and Tarafdar, N.K. (1987), "Behavior of fiber reinforced concrete beams in shear", Proceedings of the International Symposium on Fiber Reinforced Concrete, Madras, India.
  33. Khuntia, M., Stojadinovic, B. and Goel, S.C. (1999), "Shear strength of normal and high-strength fiber reinforced concrete beams without stirrups", ACI Struct. J., 96(2), 282-289.
  34. Koza, J. (1992), "Genetic programming, on the programming of computers by means of natural selection", MIT Press, Cambridge, MA.
  35. Kraslawski, A., Pedrycz, W. and Nyström, L. (1999), "Fuzzy neural network as instance generator for case-based reasoning system: an example of selection of heat exchange equipment in mixing", Neural Comput. Appl., 8(2), 106-113. https://doi.org/10.1007/s005210050013
  36. Kuo, Y.L., Jaksa, M.B., Lyamin, A.V. and Kaggwa, W.S. (2009), "ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil", Comput. Geotech., 36, 503-516. https://doi.org/10.1016/j.compgeo.2008.07.002
  37. Kwak, Y.K., Eberhard, M.O., Kim, W.S. and Kim, J. (2002), "Shear strength of steel fiber-reinforced concrete beams without stirrups", ACI Struct. J., 99(4), 530-538.
  38. Li, V.C., Ward, R. and Hamza, A.M. (1992), "Steel and synthetic fibers as shear reinforcement", ACI Mater. J., 89(5), 499-508.
  39. Lim, T.Y., Paramasivam, P. and Lee, S.L. (1987), "Shear and moment capacity of reinforced steel-fiber-concrete beams", Mag. Concrete Res., 39(140), 148-160. https://doi.org/10.1680/macr.1987.39.140.148
  40. Mansur, M.A., Ong, K.C.G. and Paramsivam, P. (1986), "Shear strength of fibrous concrete beams without stirrups", J. Struct. Eng.-ASCE, 112(9), 2066-2079. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:9(2066)
  41. Mousavi, A.H., Gandomi, A.H., Alavi, A.H. and Vesalimahmood, M. (2010), "Modeling of compressive strength of HPC mixes using a combined algorithm of genetic programming and orthogonal least squares", Struct. Eng. Mech., 36(2).
  42. Murty, D.S.R. and Venkatacharyulu, T. (1987), "Fiber reinforced concrete beams subjected to shear force", Proceedings of the International Symposium on Fiber Reinforced Concrete, Madras, India.
  43. Naaman, A.E. and Reinhardt, H.W. (2003), "High performance fiber reinforced cement composites: HPFRCC 4", RILEM Proceedings Pro 30, RILEM Publications S.A.R.L., 95-113.
  44. Narayanan, R. and Darwish, I.Y.S. (1987), "Use of steel fibers as shear reinforcement", ACI Struct. J., 84(3), 216-227.
  45. Narayanan, R. and Darwish, I.Y.S. (1988), "Fiber concrete deep beams in shear", ACI Struct. J., 85(2), 141-149.
  46. Noghabai, K. (2000), "Beams of fibrous concrete in shear and bending: experiment and model", J. Struct. Eng-ASCE, 126(2), 243-251. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:2(243)
  47. Oh, B.H, Lim, D.H., Yoo, S.W. and Kim, E.S. (1998), "Shear behavior and shear analysis of reinforced concrete beams containing steel fibers", Mag. Concrete Res., 50(4), 283-291. https://doi.org/10.1680/macr.1998.50.4.283
  48. Oltean, M. and Grosan, C. (2003), "A comparison of several linear genetic programming techniques", Complex Syst., 14(4), 1-29.
  49. Oltean, M. and Dumitrescu, D. (2002), "Multi expression programming", Technical Report, UBB-01-2002, Babes-Bolyai University, Cluj-Napoca, Romania.
  50. Pan, Y., Jiang, J., Wang, R., Cao, H. and Cui, Y. (2009), "A novel QSPR model for prediction of lower flammability limits of organic compounds based on support vector machine", J. Haz. Mater., 168(2-3), 962-969. https://doi.org/10.1016/j.jhazmat.2009.02.122
  51. Poli, R., Langdon, W.B., McPhee, N.F. and Koza, J.R. (2007), "Genetic programming: an introductory tutorial and a survey of techniques and applications", Technical Report CES-475, ISSN:1744-8050.
  52. Regmi, S., Deschaine, L.M. and Regmi, S.R. (2004), "High fidelity approximation of slow simulators using machine learning for real-time simulation/optimization", 2004 Business and Industry Symposium, Washington, DC, USA.
  53. RILEM TC-162-TDF (2000), "Test and design methods for steel fiber reinforced concrete", Mater. Struct., 33(226), 75-81. https://doi.org/10.1007/BF02484159
  54. Roberts, T.M. and Ho, N.L. (1982), "Shear failure of deep fiber reinforced concrete beams", Int. J. Cement Compo. Lightweight Concrete, 4(3), 145-152. https://doi.org/10.1016/0262-5075(82)90040-9
  55. Roy, P.P. and Roy, K. (2008), "On some aspects of variable selection for partial least squares regression models", QSAR Comb. Sci., 27, 302-313. https://doi.org/10.1002/qsar.200710043
  56. Schwefel, H.P., Wegener, I. and Weinert, K. (2002), Advances in Computational Intelligence -Theory and Practic, Springer-Verlag, Berlin.
  57. Sharma, A.K. (1986), "Shear strength of steel fiber reinforced concrete beams", ACI J., 83(4), 624-628.
  58. Shin, S.W., Oh, J. and Ghosh, S.K. (1994), "Shear behavior of laboratory-sized high-strength concrete beams reinforced with bars and steel fibers", Fiber Reinforced Concrete Developments and Innovations, SP-142, American Concrete Institute, Farmington Hills, 181-200.
  59. Smith, G.N. (1986), Probability and Statistics in Civil Engineering, Collins, London.
  60. Swamy, R.N. and Bahia, H.M. (1985), "The effectiveness of steel fibers as shear reinforcement", Concrete Int., 7(3), 35-40.
  61. Swamy, R.N., Jones, R. and Chiam, A.T.P. (1993), "Influence of steel fibers on the shear resistance of lightweight concrete I-beams", ACI Struct. J., 90(1), 103-114.
  62. Swamy, R.N., Mangat, P.S. and Rao, C.V.S.K. (1974), "The mechanics of fiber reinforcement of cement matrices", Fiber Reinforced Concrete, SP-44, American Concrete Institute, Farmington Hills, Mich., 1-28.
  63. Tan, K.H., Murugappan, K. and Paramasivam, P. (1992), "Shear behavior of steel fiber reinforced concrete beams", ACI Struct. J., 89(6), 3-11.
  64. Uomoto, T., Weerarathe, R.K., Furukoshi, H. and Fujino, H. (1986), "Shear strength of reinforced concrete beams with fibre reinforcement", Proceedings, Third International RILEM Symposium on Developments in Fibre Reinforced Cement and Concrete, Sheffield, 1986. RILEM Technical Committee 49-TFR, Sheffield University Press Unit, Sheffield.
  65. Wang, C. (2006), "Experimental investigation on behavior of steel fiber-reinforced concrete", M.Sc. Dissertation, University of Canterbury, New Zealand.
  66. Zsutty, T. (1971), "Shear strength prediction for separate categories of simple beam tests", ACI J., 68(2), 138-143.

피인용 문헌

  1. An investigation for predicting the effect of green roof utilization on temperature decreasing over the roof surface with Gene Expression Programming vol.139, 2017, https://doi.org/10.1016/j.enbuild.2017.01.014
  2. New design equations for assessment of load carrying capacity of castellated steel beams: a machine learning approach vol.23, pp.1, 2013, https://doi.org/10.1007/s00521-012-1138-4
  3. Deriving an intelligent model for soil compression index utilizing multi-gene genetic programming vol.75, pp.3, 2016, https://doi.org/10.1007/s12665-015-4889-2
  4. A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems vol.21, pp.1, 2012, https://doi.org/10.1007/s00521-011-0734-z
  5. Towards estimation of electricity demand utilizing a robust multi-gene genetic programming technique vol.8, pp.6, 2015, https://doi.org/10.1007/s12053-015-9343-5
  6. Influence of CFRP on the shear strength of RC and SFRC beams vol.153, 2017, https://doi.org/10.1016/j.conbuildmat.2017.06.170
  7. The next-generation constitutive correlations for simulation of cyclic stress-strain behaviour of sand vol.21, pp.1, 2015, https://doi.org/10.3846/13923730.2013.802726
  8. An evolutionary computational approach for formulation of compression index of fine-grained soils vol.33, 2014, https://doi.org/10.1016/j.engappai.2014.03.012
  9. Influence of polypropylene fibres on the shear strength of RC beams with web reinforcement 2017, https://doi.org/10.1080/19648189.2017.1344151
  10. Design equations for prediction of pressuremeter soil deformation moduli utilizing expression programming systems vol.23, pp.6, 2013, https://doi.org/10.1007/s00521-012-1144-6
  11. A new design equation for prediction of ultimate bearing capacity of shallow foundation on granular soils vol.19, pp.sup1, 2013, https://doi.org/10.3846/13923730.2013.801902
  12. An empirical model for shear capacity of RC deep beams using genetic-simulated annealing vol.13, pp.3, 2013, https://doi.org/10.1016/j.acme.2013.02.007
  13. A linear genetic programming approach for the prediction of solar global radiation vol.23, pp.3-4, 2013, https://doi.org/10.1007/s00521-012-1039-6
  14. Gene expression programming as a basis for new generation of electricity demand prediction models vol.74, 2014, https://doi.org/10.1016/j.cie.2014.05.010
  15. New design equations for estimation of ultimate bearing capacity of shallow foundations resting on rock masses vol.7, pp.1, 2016, https://doi.org/10.1016/j.gsf.2014.12.005
  16. Development of prediction models for shear strength of SFRCB using a machine learning approach 2019, https://doi.org/10.1007/s00521-015-1997-6
  17. Explicit formulation of bearing capacity of shallow foundations on rock masses using artificial neural networks: application and supplementary studies vol.73, pp.7, 2015, https://doi.org/10.1007/s12665-014-3630-x
  18. Nonlinear modeling of soil deformation modulus through LGP-based interpretation of pressuremeter test results vol.25, pp.7, 2012, https://doi.org/10.1016/j.engappai.2011.11.008
  19. Using measured daily meteorological parameters to predict daily solar radiation vol.76, 2015, https://doi.org/10.1016/j.measurement.2015.08.004
  20. Nonlinear mathematical modeling of seed spacing uniformity of a pneumatic planter using genetic programming and image processing vol.29, pp.2, 2018, https://doi.org/10.1007/s00521-016-2450-1
  21. Nonlinear genetic-based simulation of soil shear strength parameters vol.120, pp.6, 2011, https://doi.org/10.1007/s12040-011-0119-9
  22. An evolutionary approach for modeling of shear strength of RC deep beams vol.46, pp.12, 2013, https://doi.org/10.1617/s11527-013-0039-z
  23. Linear genetic programming for shear strength prediction of reinforced concrete beams without stirrups vol.19, 2014, https://doi.org/10.1016/j.asoc.2014.02.007
  24. Coupled SelfSim and genetic programming for non-linear material constitutive modelling vol.23, pp.7, 2015, https://doi.org/10.1080/17415977.2014.968149
  25. A feasibility study of BBP for predicting shear capacity of FRP reinforced concrete beams without stirrups vol.97, 2016, https://doi.org/10.1016/j.advengsoft.2016.02.007
  26. Shear strength of Steel Fiber Reinforced Concrete (SFRC) slender beams vol.18, pp.2, 2014, https://doi.org/10.1007/s12205-014-0320-x
  27. A hybrid computational approach to estimate solar global radiation: An empirical evidence from Iran vol.49, 2013, https://doi.org/10.1016/j.energy.2012.11.023
  28. Predicting shear strength of SFRC slender beams without stirrups using an ANN model vol.61, pp.5, 2017, https://doi.org/10.12989/sem.2017.61.5.605
  29. FEM Analysis of RC Deep Beam Depending on Shear-Span Ratio vol.19, pp.4, 2017, https://doi.org/10.5659/aikar.2017.19.4.117
  30. New machine learning prediction models for compressive strength of concrete modified with glass cullet vol.36, pp.3, 2019, https://doi.org/10.1108/ec-08-2018-0348
  31. Function space formulation of the 3-noded distorted Timoshenko metric beam element vol.69, pp.6, 2011, https://doi.org/10.12989/sem.2019.69.6.615
  32. Shear strength of steel-fibre-reinforced concrete beams with web reinforcement vol.172, pp.4, 2011, https://doi.org/10.1680/jstbu.17.00115
  33. Application of Machine Learning Techniques for Predicting the Dynamic Response of Geogrid Reinforced Foundation Beds vol.37, pp.6, 2011, https://doi.org/10.1007/s10706-019-00945-7
  34. Prediction of the Compressive Strength of Concrete Admixed with Metakaolin Using Gene Expression Programming vol.2020, pp.None, 2011, https://doi.org/10.1155/2020/8883412
  35. Two‐parameter kinematic approach for complete shear behavior of deep FRC beams vol.21, pp.1, 2011, https://doi.org/10.1002/suco.201800199
  36. Computational Hybrid Machine Learning Based Prediction of Shear Capacity for Steel Fiber Reinforced Concrete Beams vol.12, pp.7, 2020, https://doi.org/10.3390/su12072709
  37. A new formulation for prediction of the shear capacity of FRP in strengthened reinforced concrete beams vol.24, pp.9, 2011, https://doi.org/10.1007/s00500-019-04325-4
  38. Development of Advanced Computer Aid Model for Shear Strength of Concrete Slender Beam Prediction vol.10, pp.11, 2011, https://doi.org/10.3390/app10113811
  39. Probabilistic Studies on the Shear Strength of Slender Steel Fiber Reinforced Concrete Structures vol.10, pp.19, 2011, https://doi.org/10.3390/app10196955
  40. Shear capacity prediction of slender reinforced concrete structures with steel fibers using machine learning vol.227, pp.None, 2011, https://doi.org/10.1016/j.engstruct.2020.111470
  41. Shear capacity prediction of slender reinforced concrete structures with steel fibers using machine learning vol.227, pp.None, 2011, https://doi.org/10.1016/j.engstruct.2020.111470
  42. An evolutionary approach for formulation of ultimate shear strength of steel fiber-reinforced concrete beams using gene expression programming vol.34, pp.None, 2011, https://doi.org/10.1016/j.istruc.2021.10.075