References
- Chandra, S. and Prathap, G. (1989), "A field-consistent formulation for the eight-node solid finite element", Comput. Struct., 33, 345-355. https://doi.org/10.1016/0045-7949(89)90005-9
- Cook, R.D. (1989), Concepts and Applications of Finite Element Analysis, 3rd Edition, John Wiley & Sons, Canada.
- Doherty, W.P., Wilson, E.L. and Taylor, R.L. (1969), "Stress analysis of axisymmetric solids using higher order quadrilateral finite elements", University of California, Berkley, Struct. Eng. Lab Report SESM, 69-3.
- Hughes, T.R.J. (1980), "Generalization of selective integration procedures to anisotropic and nonlinear media", Int. J. Numer. Meth. Eng., 15, 1413-1418. https://doi.org/10.1002/nme.1620150914
- Kohnke, P.C. (1997), ANSYS: Theory Reference Release 5.4, ANSYS, Inc., Canonsburg, PA.
- MacNeal, R.H. and Harder, R. (1992), "Eight nodes or nine?", Int. J. Numer. Meth. Eng", 33, 1049-1058. https://doi.org/10.1002/nme.1620330510
- MacNeal, R.H. (1994), Finite Element: Their Design and Performance, Marcel Dekker, New York.
- Malkus, D.S. and Hughes, T.R.J. (1978), "Mixed finite element methods -reduced and selective integration techniques: a unification concepts", Comput. Meth. Appl. Mech. Eng., 15, 63-81. https://doi.org/10.1016/0045-7825(78)90005-1
- Mukherjee, S. and Prathap, G. (2001), "Analysis of shear locking in Timoshenko beam elements using the function space approach", Commun. Numer. Meth. Eng., 17, 385-393. https://doi.org/10.1002/cnm.413
- Naganarayana, B.P. (1991), "Consistency and correctness in quadratic displacement finite elements", PhD Thesis, Faculty of Engineering, Indian Institute of Science, Bangalore.
- Nguyen, T.T., Liu, G.R., Dai, K.Y. and Lam, K.Y. (2007), "Selective smoothed finite element method", Tsinghua Sci. Technol., 12, 497-508. https://doi.org/10.1016/S1007-0214(07)70125-6
- Pian, T.H.H. (1964), "Derivation of stiffness matrix by assumed stress distributions", AIAA J., 2, 1333-1336. https://doi.org/10.2514/3.2546
- Pitkaranta, J. (2000), "The first locking-free plane-elastic finite element: historia mathematica", Comput. Meth. Appl. Mech. Eng., 190, 1323-1366. https://doi.org/10.1016/S0045-7825(00)00163-8
- Prathap, G. (1993), The Finite Element Method in Structural Mechanics, Kluwer Academic Publishers, Dordrecht.
- Prathap, G. (1994), "Locking, rank and singularity of penalty linked stiffness matrix and consistency of strain field", Comput. Struct., 52, 35-39. https://doi.org/10.1016/0045-7949(94)90253-4
- Prathap, G. (1997), "A field-consistency approach to plate problems", Struct. Eng. Mech., 5, 853-865. https://doi.org/10.12989/sem.1997.5.6.853
- Rajendran, S. and Prathap, G. (1999), "Eight-node field-consistent hexahedron element", Struct. Eng. Mech., 7, 1-10. https://doi.org/10.12989/sem.1999.7.1.001
- Ramesh Babu, C. (1985), "Field-consistency in the finite element formulation of multi-strain-field problem in structural mechanics", PhD Thesis, Indian Institute of Technology, Madras.
- Sangeeta, K., Mukherjee, S. and Prathap, G. (2005), "A function space approach to study rank deficiency and spurious modes in finite elements", Struct. Eng. Mech., 21, 539-551. https://doi.org/10.12989/sem.2005.21.5.539
- Wilson, E.L., Taylor, R.L., Doherty, W. and Ghasboussi, J. (1973), "Incompatible displacement models", Published in Numerical and Computer Methods in Structural Mechanics, (Eds. Fenves, S.J. et al.), Academic Press, New York.
- Wolfram, S. (1999), The Mathematica Book, 4th edition, Wolfram Media.
- Zienkiewicz, O.C., Too, J. and Taylor, R.L. (1971), "Reduced integration technique in general analysis of plates and shells", Int. J. Numer. Meth. Eng., 3, 275-290. https://doi.org/10.1002/nme.1620030211