DOI QR코드

DOI QR Code

Dynamic response of a Timoshenko beam on a tensionless Pasternak foundation

  • Coskun, Irfan (Faculty of Civil Engineering, Yildiz Technical University) ;
  • Engin, Hasan (Faculty of Civil Engineering, stanbul Technical University) ;
  • Tekin, Ayfer (Faculty of Civil Engineering, Yildiz Technical University)
  • Received : 2009.10.23
  • Accepted : 2010.11.02
  • Published : 2011.03.10

Abstract

The dynamic response of a Timoshenko beam on a tensionless Pasternak foundation is investigated by assuming that the beam is subjected to a concentrated harmonic load at its middle. This action results in the creation of lift-off regions between the beam and the foundation that effect the character of the response. Although small displacements for the beam and the foundation are assumed, the problem becomes nonlinear since the contact/lift-off regions are not known at the outset. The governing equations of the beam, which are coupled in deflection and rotation, are obtained in both the contact and lift-off regions. After removing the coupling, the essentials of the problem (the contact regions) are determined by using an analytical-numerical method. The results are presented in figures to demonstrate the effects of some parameters on the extent of the contact lengths and displacements. The results are also compared with those of Bernoulli-Euler, shear, and Rayleigh beams. It is observed that the solution is not unique; for a fixed value of the frequency parameter, more than one solution (contact length) exists. The contact length of the beam increases with the increase of the frequency and rotary-inertia parameters, whereas it decreases with increasing shear foundation parameter.

Keywords

References

  1. Arboleda-Monsalve, L.G., Zapata-Medina, D.G. and Aristizabal-Ochoa, J.D. (2008), "Timoshenko beam-column with generalized end conditions on elastic foundation: Dynamic-stiffness matrix and load vector", J. Sound Vib., 310, 1057-1079. https://doi.org/10.1016/j.jsv.2007.08.014
  2. Celep, Z. and Demir, F. (2005), "Circular rigid beam on a tensionless two-parameter elastic foundation", ZAMMZ. Angew. Math. Me., 85(6), 431-439. https://doi.org/10.1002/zamm.200310183
  3. Celep, Z. and Demir, F. (2007), "Symmetrically loaded beam on a two-parameter tensionless foundation", Struct. Eng. Mech., 27(5), 555-574. https://doi.org/10.12989/sem.2007.27.5.555
  4. Celep, Z., Malaika, A. and Abu-Hussein, M. (1989), "Forced vibrations of a beam on a tensionless foundation", J. Sound Vib., 128, 235-246. https://doi.org/10.1016/0022-460X(89)90768-2
  5. Choros, J. and Adams, G.G. (1979), "A steadily moving load on an elastic beam resting on a tensionless Winkler foundation", J. Appl. Mech.-ASME, 46(1), 175-180. https://doi.org/10.1115/1.3424492
  6. Coskun, I. and Engin, H. (1999), "Non-linear vibrations of a beam on an elastic foundation", J. Sound Vib., 223(3), 335-354. https://doi.org/10.1006/jsvi.1998.1973
  7. Coskun, I. (2003), "The response of a finite beam on a tensionless Pasternak foundation subjected to a harmonic load", Eur. J. Mech. A-Solids, 22, 151-161. https://doi.org/10.1016/S0997-7538(03)00011-1
  8. Coskun, I., Engin, H. and Ozmutlu, A. (2008), "Response of a finite beam on a tensionless Pasternak foundation under symmetric and asymmetric loading", Struc. Eng. Mech., 30(1), 21-36. https://doi.org/10.12989/sem.2008.30.1.021
  9. De Rosa, M.A. (1995), "Free vibrations of Tihoshenko beams on two-parameter elastic foundation", Comput. Struct., 57(1), 151-156. https://doi.org/10.1016/0045-7949(94)00594-S
  10. De Rosa, M.A. and Maurizi, M.J. (1998), "The influence of concentrated masses and Pasternak soil on the free vibrations of Euler beams-exact solution", J. Sound Vib., 212(4), 573-581. https://doi.org/10.1006/jsvi.1997.1424
  11. Dutta, S.C. and Roy, R. (2002), "A critical review on idealization and modeling for interaction among soilfoundation-structure system", Comput. Struct., 80, 1579-1594. https://doi.org/10.1016/S0045-7949(02)00115-3
  12. Eisenberger, M. and Clastornik, J. (1987), "Beams on variable two-parameter elastic foundation", J. Eng. Mech.- ASCE, 113(10), 1454-1466. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1454)
  13. El-Mously, M. (1999), "Fundamental frequencies of Timoshenko beams mounted on Pasternak foundation", J. Sound Vib., 228(2), 452-457. https://doi.org/10.1006/jsvi.1999.2464
  14. Filipich, C.P. and Rosales, M.B. (1988), "A variant of Rayleigh's method applied to Timoshenko beams embedded in a Winkler-Pasternak medium", J. Sound Vib., 124(3), 443-451. https://doi.org/10.1016/S0022-460X(88)81386-5
  15. Filipich, C.P. and Rosales, M.B. (2002), "A further study about the behaviour of foundation piles and beams in a Winkler-Pasternak soil", Int. J. Mech. Sci., 44(1), 21-36. https://doi.org/10.1016/S0020-7403(01)00087-X
  16. Franciosi, C. and Masi, A. (1993), "Free vibrations of foundation beams on two-parameter elastic soil", Comput. Struct., 47(3), 419-426. https://doi.org/10.1016/0045-7949(93)90237-8
  17. Hetenyi, M. (1946), Beams on Elastic Foundation, The University of Michigan Press, Ann Arbor, MI.
  18. Ioakimidis, N.I. (1996), "Beams on tensionless elastic foundation: Approximate quantifier elimination with Chebyshev series", Int. J. Numer. Meth. Eng., 39(4), 663-686. https://doi.org/10.1002/(SICI)1097-0207(19960229)39:4<663::AID-NME875>3.0.CO;2-8
  19. Karamanlidis, D. and Prakash, V. (1989), "Exact transfer and stiffness matrices for a beam/column resting on a two-parameter foundation", Comput. Meth. Appl. Mech. Eng., 72, 77-89. https://doi.org/10.1016/0045-7825(89)90122-9
  20. Kargarnovin, D. and Younesian, D. (2004), "Dynamics of Timoshenko beams on Pasternak foundation under moving load", Mech. Res. Commun., 31, 713-723. https://doi.org/10.1016/j.mechrescom.2004.05.002
  21. Kerr, A.D. and Coffin, D.W. (1991), "Beams on a two-dimensional Pasternak base subjected to loads that cause lift-off", Int. J. Solids Struct., 28(4), 413-422. https://doi.org/10.1016/0020-7683(91)90057-M
  22. Lancioni, G. and Lenci, S. (2007), "Forced nonlinear oscillations of a semi-infinite beam resting on a unilateral elastic soil: Analytical and numerical solutions", J. Comput. Nonlin. Dyn.-ASME, 2(2), 155-166. https://doi.org/10.1115/1.2447406
  23. Lin, L. and Adams, G.G. (1987), "Beam on tensionless elastic foundation", J. Eng. Mech.-ASCE, 113(4), 542- 553. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:4(542)
  24. Ma, X., Butterworth, J.W. and Clifton, G.C. (2009), "Static analysis of an infinite beam resting on a tensionless Pasternak foundation", Eur. J. Mech. A-Solids, 28, 697-703. https://doi.org/10.1016/j.euromechsol.2009.03.003
  25. Mallik, A.K., Chandra, S. and Singh, A.B. (2006), "Steady-state response of an elastically supported infinite beam to a moving load", J. Sound Vib., 291, 1148-1169. https://doi.org/10.1016/j.jsv.2005.07.031
  26. Rao, G.V. (2003), "Large-amplitude free vibrations of uniform beams on Pasternak foundation", J. Sound Vib., 263(4), 954-960. https://doi.org/10.1016/S0022-460X(02)01486-4
  27. Selvadurai, A.P.S. (1979), Elastic Analysis of Soil-Foundation Interaction, Elsevier, Amsterdam.
  28. Silveira, R.A.M., Pereira, W.L.A. and Gonçalves, P.B. (2008), "Nonlinear analysis of structural elements under unilateral contact constraints by a Ritz type approach", Int. J. Solids Struct., 45, 2629-2650. https://doi.org/10.1016/j.ijsolstr.2007.12.012
  29. Tsai, N.C. and Westmann, RE. (1967), "Beams on tensionless foundation", J. Eng. Mech. Div.-ASCE, 93, 1-12.
  30. Valsangkar, A.J. and Pradhanang, R. (1988), "Vibrations of beam-columns on two-parameter elastic foundations", Earthq. Eng. Struct. D., 16, 217-225. https://doi.org/10.1002/eqe.4290160205
  31. Vlasov, V.Z. and Leont'ev, U.N. (1966), Beams, Plates and Shells on Elastic Foundation (Translated from Russian), Israel Program for Scientific Translations, Jerusalem.
  32. Wang, T.M. and Gagnon, M.J. (1978), "Vibrations of continuous Timoshenko beams on Winkler-Pasternak foundations", J. Sound Vib., 59(2), 211-220. https://doi.org/10.1016/0022-460X(78)90501-1
  33. Wang, T.M. and Stephens, J.E. (1977), "Natural frequencies of Timoshenko beams on Pasternak foundations", J. Sound Vib., 51(2), 149-155. https://doi.org/10.1016/S0022-460X(77)80029-1
  34. Weitsman, Y. (1970), "On foundations that react in compression only", J. Appl. Mech.-ASME, 37(4), 1019-1030. https://doi.org/10.1115/1.3408653
  35. Weitsman, Y. (1971), "Onset of separation between a beam and tensionless elastic foundation under a moving load", Int. J. Mech. Sci., 13, 707-711. https://doi.org/10.1016/0020-7403(71)90070-1
  36. Yokoyama, T. (1991), "Vibrations of Timoshenko beam-columns on two-parameter elastic foundations", Earthq. Eng. Struct. D., 20(4), 355-370. https://doi.org/10.1002/eqe.4290200405
  37. Zhang, Y. (2008), "Tensionless contact of a finite beam resting on Reissner foundation", Int. J. Mech. Sci., 50, 1035-1041. https://doi.org/10.1016/j.ijmecsci.2008.02.006
  38. Zhang, Y. and Murphy, D.K. (2004), "Response of a finite beam in contact with a tensionless foundation under symmetric and asymmetric loading", Int. J. Solids Struct., 41, 6745-6758. https://doi.org/10.1016/j.ijsolstr.2004.05.028

Cited by

  1. A numerical approach for equilibrium and stability analysis of slender arches and rings under contact constraints vol.50, pp.1, 2013, https://doi.org/10.1016/j.ijsolstr.2012.09.015