참고문헌
- Andrieu, C., Freitas, N. de, Doucet, A. and Jordan, M. (2003), "An introduction to MCMC for machine learning", Mach. Learn., 50, 5-43. https://doi.org/10.1023/A:1020281327116
- Athanasios, P. (1984), Probability, Random Variables, and Stochastic Processes, Second edition, McGraw-Hill, New York.
- Bayes, T. (1763), "An essay towards solving a problem in the doctrine of chances", Philos. T. Roy. Soc., 53, 370-418. https://doi.org/10.1098/rstl.1763.0053
- Bayes, T. (1763), "An essay towards solving a problem in the doctrine of chances", Philos. T. Roy. Soc., 53, 370-418. https://doi.org/10.1098/rstl.1763.0053
- Gelman, A., Carlim, J.B., Stern, H.S. and Rubin, D.B. (2004), Bayesian Data Analysis, Second edition, Chapman & Hall/CRC, New York.
- Guo, H., Watson, S., Tavner, P. and Xiang, J. (2009), "Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation", Reliab. Eng. Syst. Safe., 94(6), 1057-1063. https://doi.org/10.1016/j.ress.2008.12.004
- Haldar, A. and Mahadevan, S. (2000), Probability, Reliability, and Statistical Methods in Engineering Design, John Wiley & Sons Inc., New York.
- Kim, N.H., Pattabhiraman, S. and Houck III L.A. (2010), "Bayesian approach for fatigue life prediction from field data", Proceedings of the 2010 ASME Turbo Expo Gas Turbine Technical Congress and Exposition, Scotland, June.
- Marahleh, G., Kheder, A.R.I. and Hamad, H.F. (2006), "Creep-life prediction of service-exposed turbine blades", Mater. Sci., 42(4), 49-53.
- Orchard, M., Wu, B. and Vachtsevanos, G. (2005), "A particle filtering framework for failure prognosis", Proceedings of the World Tribology Congress III, Washington, D.C., September.
- Park, J. and Nelson, D. (2000), "Evaluation of an energy-based approach and a critical plane approach for predicting constant amplitude multiaxial fatigue life", Int. J. Fatigue, 22, 23-39. https://doi.org/10.1016/S0142-1123(99)00111-5
- Voigt, M., Mücke, R., Vogeler, K. and Oevermann, M. (2004), "Probabilistic lifetime analysis for turbine blades based on a combined direct Monte Carlo and response surface approach", ASME Publication, ASME Turbo Expo, Vienna, June.
- Weiss, T., Voigt, M., Schlums, H., Mücke, R., Becker, K.H. and Vogeler, K. (2009), "Probabilistic finite-elementanalysis on turbine blades", ASME Turbo Expo, Florida, June.
피인용 문헌
- Adaptive Warranty Prediction for Highly Reliable Products vol.64, pp.3, 2015, https://doi.org/10.1109/TR.2015.2427153
- A Study on the Modeling of PoF Estimation for Probabilistic Risk Assessment based on Bayesian Method vol.41, pp.8, 2013, https://doi.org/10.5139/JKSAS.2013.41.8.619
- A study on Application of Probabilistic Fatigue Life Prediction for Aircraft Structures using the PoF based on Bayesian Approach vol.16, pp.5, 2013, https://doi.org/10.9766/KIMST.2013.16.5.631
- A homogenization approach for uncertainty quantification of deflection in reinforced concrete beams considering microstructural variability vol.38, pp.4, 2011, https://doi.org/10.12989/sem.2011.38.4.503
- Statistical wind prediction and fatigue analysis for horizontal-axis wind turbine composite material blade under dynamic loads vol.9, pp.9, 2017, https://doi.org/10.1177/1687814017724088
- Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained results vol.64, 2016, https://doi.org/10.1016/j.rser.2016.05.083
- Predicting fatigue damage in composites: A Bayesian framework vol.51, 2014, https://doi.org/10.1016/j.strusafe.2014.06.002
- Uncertainty Analysis in Fatigue Life Prediction of Gas Turbine Blades Using Bayesian Inference vol.32, pp.4, 2015, https://doi.org/10.1515/tjj-2014-0037
- Fatigue crack growth prediction in nuclear piping using Markov chain Monte Carlo simulation vol.40, pp.1, 2017, https://doi.org/10.1111/ffe.12486
- Fatigue life prediction of multiple site damage based on probabilistic equivalent initial flaw model vol.38, pp.4, 2011, https://doi.org/10.12989/sem.2011.38.4.443
- A Survey on Prognostics and Comparison Study on the Model-Based Prognostics vol.17, pp.11, 2011, https://doi.org/10.5302/J.ICROS.2011.17.11.1095
- Cost-Effectiveness of Structural Health Monitoring in Fuselage Maintenance of the Civil Aviation Industry † vol.5, pp.3, 2018, https://doi.org/10.3390/aerospace5030087
- Comparison of Bayesian Methods on Parameter Identification for a Viscoplastic Model with Damage vol.10, pp.7, 2020, https://doi.org/10.3390/met10070876
- Bayesian Parameter Determination of a CT-Test Described by a Viscoplastic-Damage Model Considering the Model Error vol.10, pp.9, 2011, https://doi.org/10.3390/met10091141
- Comparison of Bayesian methods on parameter identification for a viscoplastic model with damage vol.62, pp.None, 2011, https://doi.org/10.1016/j.probengmech.2020.103083
- Prediction of Fatigue Crack Growth Behaviour in Ultrafine Grained Al 2014 Alloy Using Machine Learning vol.10, pp.10, 2020, https://doi.org/10.3390/met10101349
- A Novel Probabilistic Fatigue Life Prediction Method for Welded Structures Based on gPC vol.2021, pp.None, 2011, https://doi.org/10.1155/2021/5534643
- Creep Life Prediction of Aircraft Turbine Disc Alloy Using Continuum Damage Mechanics vol.38, pp.1, 2011, https://doi.org/10.1515/tjj-2017-0043
- Methods of Identifying Correlated Model Parameters with Noise in Prognostics vol.8, pp.5, 2021, https://doi.org/10.3390/aerospace8050129
- Real‐time prediction method of fatigue life of bridge crane structure based on digital twin vol.44, pp.9, 2011, https://doi.org/10.1111/ffe.13489