DOI QR코드

DOI QR Code

The Homotopy Perturbation Method for free vibration analysis of beam on elastic foundation

  • Ozturk, Baki (Department of Civil Engineering, Faculty of Engineering and Architecture, Nigde University) ;
  • Coskun, Safa Bozkurt (Department of Civil Engineering, Faculty of Engineering, Kocaeli University)
  • Received : 2010.06.22
  • Accepted : 2010.10.28
  • Published : 2011.02.25

Abstract

In this study, the homotopy perturbation method (HPM) is applied to free vibration analysis of beam on elastic foundation. This numerical method is applied on three different axially loaded cases, namely: 1) one end fixed, the other end simply supported; 2) both ends fixed and 3) both ends simply supported cases. Analytical solutions and frequency factors are evaluated for different ratios of axial load N acting on the beam to Euler buckling load, $N_r$. The application of HPM for the particular problem in this study gives results which are in excellent agreement with both analytical solutions and the variational iteration method (VIM) solutions for all the cases considered in this study and the differential transform method (DTM) results available in the literature for the fixed-pinned case.

Keywords

References

  1. Atay, M.T. (2009), "Determination of critical buckling loads for variable stiffness Euler Columns using Homotopy Perturbation Method", Int. J. Nonlin. Sci. Num., 10(2), 199-206.
  2. Chen, C.K. and Ho, S.H. (1996), "Application of differential transformation to eigenvalue problem", J. Appl. Math. Comput., 79, 173-188. https://doi.org/10.1016/0096-3003(95)00253-7
  3. Chen, C.K. and Ho, S.H. (1999), "Transverse vibration of a rotating twisted Timoshenko beams under axial loading using differential transform", Int. J. Mech. Sci., 41, 1339-1356. https://doi.org/10.1016/S0020-7403(98)00095-2
  4. Civalek,O. and Ozturk, B. (2010), "Free vibration analysis of tapered beam-column with pinned ends embedded in Winkler-Pasternak elastic foundation", Geomech. Eng., 2(1), 45-56. https://doi.org/10.12989/gae.2010.2.1.045
  5. Coskun, S.B. (2009), "Determination of critical buckling loads for Euler columns of variable flexural stiffness with a continuous elastic restraint using Homotopy Perturbation Method", Int. J. Nonlin. Sci. Num., 10(2), 191-197.
  6. Coskun, S.B. (2010), "Analysis of tilt-buckling of Euler columns with varying flexural stiffness using homotopy perturbation method", Math. Model. Anal., 15(3), 275-286. https://doi.org/10.3846/1392-6292.2010.15.275-286
  7. Catal, H.H. (2002), "Free vibration of partially supported piles with the effects of bending moment, axial and shear force", Eng. Struct., 24, 1615-1622. https://doi.org/10.1016/S0141-0296(02)00113-X
  8. Catal, S. (2008), "Solution of free vibration equations of beam on elastic soil by using differential transform method", Appl. Math. Model., 32, 1744-1757. https://doi.org/10.1016/j.apm.2007.06.010
  9. Doyle, P.F. and Pavlovic, M.N. (1982), "Vibration of beams on partial elastic foundations", Earthq. Eng. Struct. Dyn., 10, 663-674. https://doi.org/10.1002/eqe.4290100504
  10. He, J.H. (2000), "A coupling method of a homotopy technique and a perturbation technique for non-linear problems", Int. J. Nonlin. Mech., 35(1), 37-43. https://doi.org/10.1016/S0020-7462(98)00085-7
  11. He, J.H. (2004a), "The homotopy perturbation method for non-linear oscillators with Discontinuities", Appl. Math. Comput., 151(1), 287-292. https://doi.org/10.1016/S0096-3003(03)00341-2
  12. He, J.H. (2004b), "Asymptotology by homotopy perturbation method", Appl. Math. Comput., 156(3), 591-596. https://doi.org/10.1016/j.amc.2003.08.011
  13. He, J.H. (2005), "Application of homotopy perturbation method to non-linear wave equation", Chaos Soliton. Fract., 26(3), 695-700. https://doi.org/10.1016/j.chaos.2005.03.006
  14. He, J.H. (2006), "The homotopy perturbation method for solving boundary problems", Phys. Lett. A, 350(1), 87- 88. https://doi.org/10.1016/j.physleta.2005.10.005
  15. Hesameddini, E. and Latifizadeh, H. (2009a), "An optimal choice of initial solutions in the homotopy perturbation method", Int. J. Nonlin. Sci. Num., 10, 1389-1398.
  16. Hesameddini, E. and Latifizadeh, H. (2009b), "A new vision of the He's homotopy perturbation method", Int. J. Nonlin. Sci. Num., 10, 1415-1424.
  17. Ozdemir, O. and Kaya, M.O. (2006), "Flabse bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method", J. Sound Vib., 289, 413-420. https://doi.org/10.1016/j.jsv.2005.01.055
  18. Ozturk, B. (2009), "Free vibration analysis of beam on elastic foundation by the variational iteration method", Int. J. Nonlin. Sci. Num., 10(10), 1255-1262.
  19. Raftoyiannis, I.G., Avraam, T.P. and Michaltsos, G.T. (2010), "Dynamic behavior of infinite beams resting on elastic foundation under the action of moving loads", Struct. Eng. Mech., 35(3), 379-382. https://doi.org/10.12989/sem.2010.35.3.379
  20. Tuma, J. and Cheng, F. (1983), Theory and Problems of Dynamic Structural Analysis, Schaum's Outline Series, McGraw-Hill Inc., New York, U.S.A.
  21. West, H.H. and Mafi, M. (1984), "Eigenvalues for beam-columns on elastic supports", J. Struct. Eng.-ASCE, 110, 1305-1319. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:6(1305)

Cited by

  1. Nonlinear dynamics of two degree of freedom systems with linear and nonlinear stiffnesses vol.12, pp.3, 2013, https://doi.org/10.1007/s11803-013-0182-0
  2. Buckling analysis of nonuniform columns with elastic end restraints vol.7, pp.5, 2012, https://doi.org/10.2140/jomms.2012.7.485
  3. Accurate analytical solution for nonlinear free vibration of beams vol.43, pp.3, 2012, https://doi.org/10.12989/sem.2012.43.3.337
  4. Free Vibration Analysis of an Euler Beam of Variable Width on the Winkler Foundation Using Homotopy Perturbation Method vol.2013, 2013, https://doi.org/10.1155/2013/721294
  5. Vibration analysis of high nonlinear oscillators using accurate approximate methods vol.46, pp.1, 2013, https://doi.org/10.12989/sem.2013.46.1.137
  6. Free vibration of an axially functionally graded pile with pinned ends embedded in Winkler-Pasternak elastic medium vol.40, pp.4, 2011, https://doi.org/10.12989/sem.2011.40.4.583
  7. Nonlocal beam theory for nonlinear vibrations of a nanobeam resting on elastic foundation vol.2016, pp.1, 2016, https://doi.org/10.1186/s13661-016-0561-3
  8. Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials vol.43, pp.1, 2012, https://doi.org/10.12989/sem.2012.43.1.105
  9. A theoretical and experimental investigation on large amplitude free vibration behavior of a pretensioned beam with clamped–clamped ends using modified homotopy perturbation method vol.230, pp.10, 2016, https://doi.org/10.1177/0954406215580663
  10. Field Measurement and Mechanical Analysis of Height of the Water Flowing Fracture Zone in Short-Wall Block Backfill Mining beneath the Aquifer: A Case Study in China vol.2018, pp.1468-8123, 2018, https://doi.org/10.1155/2018/7873682
  11. Geometric Nonlinear Vibration Analysis for Pretensioned Rectangular Orthotropic Membrane vol.54, pp.1, 2018, https://doi.org/10.1007/s10778-018-0864-4
  12. Nonlinear vibration of multi-body systems with linear and nonlinear springs vol.25, pp.4, 2011, https://doi.org/10.12989/scs.2017.25.4.497
  13. Nonlinear Vibration of a Nonlocal Nanobeam Resting on Fractional-Order Viscoelastic Pasternak Foundations vol.2, pp.3, 2018, https://doi.org/10.3390/fractalfract2030021
  14. Free Vibrations of an Elastically Restrained Euler Beam Resting on a Movable Winkler Foundation vol.2019, pp.None, 2011, https://doi.org/10.1155/2019/2724768