References
- Atay, M.T. (2009), "Determination of critical buckling loads for variable stiffness Euler Columns using Homotopy Perturbation Method", Int. J. Nonlin. Sci. Num., 10(2), 199-206.
- Chen, C.K. and Ho, S.H. (1996), "Application of differential transformation to eigenvalue problem", J. Appl. Math. Comput., 79, 173-188. https://doi.org/10.1016/0096-3003(95)00253-7
- Chen, C.K. and Ho, S.H. (1999), "Transverse vibration of a rotating twisted Timoshenko beams under axial loading using differential transform", Int. J. Mech. Sci., 41, 1339-1356. https://doi.org/10.1016/S0020-7403(98)00095-2
- Civalek,O. and Ozturk, B. (2010), "Free vibration analysis of tapered beam-column with pinned ends embedded in Winkler-Pasternak elastic foundation", Geomech. Eng., 2(1), 45-56. https://doi.org/10.12989/gae.2010.2.1.045
- Coskun, S.B. (2009), "Determination of critical buckling loads for Euler columns of variable flexural stiffness with a continuous elastic restraint using Homotopy Perturbation Method", Int. J. Nonlin. Sci. Num., 10(2), 191-197.
- Coskun, S.B. (2010), "Analysis of tilt-buckling of Euler columns with varying flexural stiffness using homotopy perturbation method", Math. Model. Anal., 15(3), 275-286. https://doi.org/10.3846/1392-6292.2010.15.275-286
- Catal, H.H. (2002), "Free vibration of partially supported piles with the effects of bending moment, axial and shear force", Eng. Struct., 24, 1615-1622. https://doi.org/10.1016/S0141-0296(02)00113-X
- Catal, S. (2008), "Solution of free vibration equations of beam on elastic soil by using differential transform method", Appl. Math. Model., 32, 1744-1757. https://doi.org/10.1016/j.apm.2007.06.010
- Doyle, P.F. and Pavlovic, M.N. (1982), "Vibration of beams on partial elastic foundations", Earthq. Eng. Struct. Dyn., 10, 663-674. https://doi.org/10.1002/eqe.4290100504
- He, J.H. (2000), "A coupling method of a homotopy technique and a perturbation technique for non-linear problems", Int. J. Nonlin. Mech., 35(1), 37-43. https://doi.org/10.1016/S0020-7462(98)00085-7
- He, J.H. (2004a), "The homotopy perturbation method for non-linear oscillators with Discontinuities", Appl. Math. Comput., 151(1), 287-292. https://doi.org/10.1016/S0096-3003(03)00341-2
- He, J.H. (2004b), "Asymptotology by homotopy perturbation method", Appl. Math. Comput., 156(3), 591-596. https://doi.org/10.1016/j.amc.2003.08.011
- He, J.H. (2005), "Application of homotopy perturbation method to non-linear wave equation", Chaos Soliton. Fract., 26(3), 695-700. https://doi.org/10.1016/j.chaos.2005.03.006
- He, J.H. (2006), "The homotopy perturbation method for solving boundary problems", Phys. Lett. A, 350(1), 87- 88. https://doi.org/10.1016/j.physleta.2005.10.005
- Hesameddini, E. and Latifizadeh, H. (2009a), "An optimal choice of initial solutions in the homotopy perturbation method", Int. J. Nonlin. Sci. Num., 10, 1389-1398.
- Hesameddini, E. and Latifizadeh, H. (2009b), "A new vision of the He's homotopy perturbation method", Int. J. Nonlin. Sci. Num., 10, 1415-1424.
- Ozdemir, O. and Kaya, M.O. (2006), "Flabse bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method", J. Sound Vib., 289, 413-420. https://doi.org/10.1016/j.jsv.2005.01.055
- Ozturk, B. (2009), "Free vibration analysis of beam on elastic foundation by the variational iteration method", Int. J. Nonlin. Sci. Num., 10(10), 1255-1262.
- Raftoyiannis, I.G., Avraam, T.P. and Michaltsos, G.T. (2010), "Dynamic behavior of infinite beams resting on elastic foundation under the action of moving loads", Struct. Eng. Mech., 35(3), 379-382. https://doi.org/10.12989/sem.2010.35.3.379
- Tuma, J. and Cheng, F. (1983), Theory and Problems of Dynamic Structural Analysis, Schaum's Outline Series, McGraw-Hill Inc., New York, U.S.A.
- West, H.H. and Mafi, M. (1984), "Eigenvalues for beam-columns on elastic supports", J. Struct. Eng.-ASCE, 110, 1305-1319. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:6(1305)
Cited by
- Nonlinear dynamics of two degree of freedom systems with linear and nonlinear stiffnesses vol.12, pp.3, 2013, https://doi.org/10.1007/s11803-013-0182-0
- Buckling analysis of nonuniform columns with elastic end restraints vol.7, pp.5, 2012, https://doi.org/10.2140/jomms.2012.7.485
- Accurate analytical solution for nonlinear free vibration of beams vol.43, pp.3, 2012, https://doi.org/10.12989/sem.2012.43.3.337
- Free Vibration Analysis of an Euler Beam of Variable Width on the Winkler Foundation Using Homotopy Perturbation Method vol.2013, 2013, https://doi.org/10.1155/2013/721294
- Vibration analysis of high nonlinear oscillators using accurate approximate methods vol.46, pp.1, 2013, https://doi.org/10.12989/sem.2013.46.1.137
- Free vibration of an axially functionally graded pile with pinned ends embedded in Winkler-Pasternak elastic medium vol.40, pp.4, 2011, https://doi.org/10.12989/sem.2011.40.4.583
- Nonlocal beam theory for nonlinear vibrations of a nanobeam resting on elastic foundation vol.2016, pp.1, 2016, https://doi.org/10.1186/s13661-016-0561-3
- Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials vol.43, pp.1, 2012, https://doi.org/10.12989/sem.2012.43.1.105
- A theoretical and experimental investigation on large amplitude free vibration behavior of a pretensioned beam with clamped–clamped ends using modified homotopy perturbation method vol.230, pp.10, 2016, https://doi.org/10.1177/0954406215580663
- Field Measurement and Mechanical Analysis of Height of the Water Flowing Fracture Zone in Short-Wall Block Backfill Mining beneath the Aquifer: A Case Study in China vol.2018, pp.1468-8123, 2018, https://doi.org/10.1155/2018/7873682
- Geometric Nonlinear Vibration Analysis for Pretensioned Rectangular Orthotropic Membrane vol.54, pp.1, 2018, https://doi.org/10.1007/s10778-018-0864-4
- Nonlinear vibration of multi-body systems with linear and nonlinear springs vol.25, pp.4, 2011, https://doi.org/10.12989/scs.2017.25.4.497
- Nonlinear Vibration of a Nonlocal Nanobeam Resting on Fractional-Order Viscoelastic Pasternak Foundations vol.2, pp.3, 2018, https://doi.org/10.3390/fractalfract2030021
- Free Vibrations of an Elastically Restrained Euler Beam Resting on a Movable Winkler Foundation vol.2019, pp.None, 2011, https://doi.org/10.1155/2019/2724768