References
- Attar, P.J. and Dowell, E.H. (2005), "A reduced order system ID approach to the modeling of nonlinear structural behavior in aeroelasticity", J. Fluid Struct., 21, 531-542. https://doi.org/10.1016/j.jfluidstructs.2005.08.012
- Bingnan, S., Guodong, M. and Wenjuan, L. (2003), "Wind induced coupling dynamic response of closed membrane structures", Proceeding of Eleventh International Conference on Wind Engineering, Sanya, Hainan, December.
- Dowell, E.H. (1970), "Panel flutter: A review of the aeroelastic stability of panel and shells", AIAA J., 8(3), 385-399. https://doi.org/10.2514/3.5680
- Forsching, H.W. (1980), Principles of Aeroelasticity, Shanghai Science & Technology Press, Shanghai. (in Chinese)
- Ivovich, V.A. and Pokrovskii, L.N. (1991), Dynamic Analysis of Suspended Roof Systems, A.A. Balkema, Rotterdam.
- Kawakita, S., Bienkiewicz, B. and Cermak, J.E. (1992), "Aerolelastic model study of suspended cable roof", J. Wind Eng. Ind. Aerod., 42, 1459-1470. https://doi.org/10.1016/0167-6105(92)90153-2
- Kornecki, A., Dowell, E.H. and O'Brien, J. (1976), "On the aeroelastic instability of two-dimensional panels in uniform incompressible flow", J. Sound Vib., 47(2), 163-178. https://doi.org/10.1016/0022-460X(76)90715-X
- Li, Q.X. and Sun, B.N. (2006), "Wind-induced aerodynamic instability analysis of the closed membrane roofs", J. Vib. Eng., 19(3), 346-353.
- Minarni, H., Okuda, Y. and Kawamura, S. (1993), "Experimental studies on the flutter behavior of membranes in a wind tunnel", Space Struct., 4, 935-945.
- Miyake, A., Yoshimura, T. and Makino, M. (1992), "Aerodynamic instability of suspended roof modals", J. Wind Eng. Ind. Aerod., 42, 1471-1482. https://doi.org/10.1016/0167-6105(92)90154-3
- Scott, R.C., Bartels, R.E. and Kandil, O.A. (2007), "An aeroelastic analysis of a thin flexible membrane", Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, April.
- Shin, C.H., Kim, W.S. and Chung, J.T. (2004), "Free in-plane vibration of an axially moving membrane", J. Sound Vib., 272(1-2), 137-154. https://doi.org/10.1016/S0022-460X(03)00323-7
- Stanford, B., Ifju, P., Albertani, R. and Shyy, W. (2008), "Fixed membrane wings for micro air vehicles: Experimental characterization, numerical modeling, and tailoring", Prog. Aerosp. Sci., 44(4), 258-294. https://doi.org/10.1016/j.paerosci.2008.03.001
- Stanford, B., Sytsma, M., Albertani, R., Viieru, D., Shyy, W. and Ifju, P. (2007), "Static aeroelastic model validation of membrane micro air vehicle wings", AIAA J., 45(12), 2828-2837. https://doi.org/10.2514/1.30003
- Sygulski, R. (1994), "Dynamic analysis of open membrane structures interaction with air", Int. J. Numer. Meth. Eng., 37(11), 1807-1823. https://doi.org/10.1002/nme.1620371103
- Sygulski, R. (1994), "Dynamic analysis of open membrane structures interaction with air", Int. J. Numer. Meth. Eng., 37(11), 1807-1823. https://doi.org/10.1002/nme.1620371103
- Uematsu, Y. and Uchiyama, K. (1986), "Aeroelastic behavior of an H.P.shaped suspended roof", Proceedings of the IASS Symposium on Membrane Structures and Space Frame, Osaka, May.
- Yang, Q.S. and Liu, R.X. (2006), "Studies on aerodynamic stability of membrane structures", Eng. Mech., 23(9), 18-24.
- Zheng, Z.L., Liu, C.J., He, X.T. and Chen, S.L. (2009), "Free vibration analysis of rectangular Orthotropic Membranes in Large Deflection", Math. Probl. Eng., Article ID 634362, doi:10.1155/2009/634362.
Cited by
- Aerodynamic Stability Analysis of Geometrically Nonlinear Orthotropic Membrane Structure with Hyperbolic Paraboloid vol.137, pp.11, 2011, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000278
- Power series solution of circular membrane under uniformly distributed loads: investigation into Hencky transformation vol.45, pp.5, 2013, https://doi.org/10.12989/sem.2013.45.5.631
- Nonlinear wind-induced aerodynamic stability of orthotropic saddle membrane structures vol.164, 2017, https://doi.org/10.1016/j.jweia.2017.02.006
- Nonlinear wind-induced instability of orthotropic plane membrane structures vol.25, pp.5, 2017, https://doi.org/10.12989/was.2017.25.5.415
- Additional Mass: Orthotropic Membrane Material with Four Sides Fixed in Air Flow vol.8, pp.6, 2020, https://doi.org/10.4236/jamp.2020.86074
- Effect of Geometric Nonlinearity on Membrane Roof Stability in Air Flow vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/2305145