과제정보
연구 과제 주관 기관 : National Science Foundation of China
참고문헌
- Bazant, Z.P. and Baweja, S. (1995a), "Creep and shrinkage prediction model for analysis and design of concrete structures-model B3", Mater. Struct., 28, 357-365. https://doi.org/10.1007/BF02473152
- Bazant, Z.P. and Baweja, S. (1995b), "Justification and refinements of model B3 for concrete creep and shrinkage. 2. Updating and theoretical basis", Mater. Struct., 28, 488-495. https://doi.org/10.1007/BF02473171
- Chen, B.C. (2007), Design and Construction of CFT Arch Bridges, People Jiaotong Press, Beijing, China. (in Chinese)
- Han, B. and Wang, Y.F. (2001), "Creep analysis of small eccentrically compressed CFT members", Eng. Mech., 18(6), 110-116. (in Chinese)
- Han, B. and Wang, Y.F. (2004), "Long term load-carrying capacity of axially compressed concrete filled steel tubular short columns", Proceedings of '04 ISCC, Changsha, China.
- Lam, J.P. (2002), "Evaluation of concrete shrinkage and creep prediction models", MS thesis, Civil and Environmental Engineering Dept., San Jose State University, San Jose State.
- Lee, C.F., Lau, C.K., Ng, C.W.W., Kwong, A.K.L., Pang, P.L.R., Yin, J.H. and Yue, Z. Q. (2001), Soft Soil Engineering, Swets & Zeitlinger B.V., Lisse, The Netherlands.
- Neville, A.M. (2002), "Creep of concrete and behavior of structures. Part I: problems", Concrete Int., 24(5), 59-66.
- Rajeev, G., Ram, K. and Paul, D.K. (2007), "Comparative study of various creep and shrinkage prediction models for concrete", J. Mater. Civil Eng., 19(3), 249-260. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:3(249)
- Sapountzakis, E.J. and Katsikadelis, J.T. (2003), "Creep and shrinkage effect on the dynamic analysis of reinforced concrete slab-and-beam structures", J. Sound Vib., 260(3), 403-416. https://doi.org/10.1016/S0022-460X(02)00938-0
- Sapountzakis, E.J. (2004), "Dynamic analysis of composite steel-concrete structures with deformable connection", Comput. Struct., 82(9-10), 717-729. https://doi.org/10.1016/j.compstruc.2004.02.012
- Starossek, U., Falah, N. and Lohning, T. (2010), "Numerical analyses of the force transfer in concrete-filled steel tube columns", Struc. Eng. Mech., 35(2), 2651-2666.
- Wang, Y.F. and Han, B. (1999), "Creep analysis of axially compressed concrete filled steel tubular members", Proceedings of EPMESC VII, Macao.
- Wang, Y.F. and Xu, S.J. (2001), "Study on dynamic response of concrete filled steel tubular arch-bridge under moving vehicles", Proceedings of International Symposium on Traffic Induced Vibrations & Controls, Beijing, China.
- Wang, Y.F. (2006), Creep of Concrete Filled Steel Tube, Science Press, Beijing, China. (in Chinese)
- Wang, Y.F., Han, B. and Zhang, D.J. (2008), "Advances in creep of concrete filled steel tube members and structures", Proceedings of '8 Concreep Conference, Ise-Shima, Japan.
- Wang, Y.F., Han, B., Du, J.S. and Liu, K.W. (2007), "Creep analysis of concrete filled steel tube arch bridges", Struct. Eng. Mech., 27(6), 639-650. https://doi.org/10.12989/sem.2007.27.6.639
- Wen, J. and Wang, Y.F. (2006), "Advances in study on dynamic behavior of creep of concrete filled steel tube", Proceedings of 8th ASCCS, Harbin, China.
- Zhong, S.T. (2003), Concrete Filled Steel Tubular structures, Tsinghua University Press, Beijing, China. (in Chinese)
- Zhou, Y. and Wang, Y.F. (2006), "Creep effect on the dynamic analysis of concrete filled steel tubular arch bridge", J. Dalian Univ. of Tech., 46(1), 82-87. (in Chinese)
피인용 문헌
- Time-Dependent Analysis of Long-Span, Concrete-Filled Steel Tubular Arch Bridges vol.19, pp.4, 2014, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000549
- Influence of creep on dynamic behavior of concrete filled steel tube arch bridges vol.21, pp.1, 2016, https://doi.org/10.12989/scs.2016.21.1.109
- Concrete arch bridges built by lattice cantilevers vol.45, pp.5, 2013, https://doi.org/10.12989/sem.2013.45.5.703
- Creep performance of concrete-filled steel tubular (CFST) columns and applications to a CFST arch bridge vol.19, pp.1, 2015, https://doi.org/10.12989/scs.2015.19.1.111
- Creep Effects on the Reliability of a Concrete-Filled Steel Tube Arch Bridge vol.18, pp.10, 2013, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000446
- Arch-to-beam rigidity analysis for V-shaped rigid frame composite arch bridges vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.405
- Out-of-plane creep buckling analysis on slender concrete-filled steel tubular arches vol.140, 2018, https://doi.org/10.1016/j.jcsr.2017.10.010
- Time-dependent effects on dynamic properties of cable-stayed bridges vol.41, pp.1, 2012, https://doi.org/10.12989/sem.2012.41.1.139
- Creep influence on structural dynamic reliability vol.99, 2015, https://doi.org/10.1016/j.engstruct.2015.04.018
- Investigating the Hysteretic Behavior of Concrete-Filled Steel Tube Arch by Using a Fiber Beam Element vol.2015, 2015, https://doi.org/10.1155/2015/409530
- Temperature Effect on Creep Behavior of CFST Arch Bridges vol.18, pp.12, 2013, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000484
- Spatial mechanical behaviors of long-span V-shape rigid frame composite arch bridges vol.47, pp.1, 2013, https://doi.org/10.12989/sem.2013.47.1.059
- Long-term structural analysis and stability assessment of three-pinned CFST arches accounting for geometric nonlinearity vol.20, pp.2, 2016, https://doi.org/10.12989/scs.2016.20.2.379
- RC Arch Deck Development and Performance Evaluation for Enhanced Deck Width vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0295-y
- Theoretical Framework for Creep Effect Analysis of Axially Loaded Short CFST Columns under High Stress Levels vol.2020, pp.None, 2011, https://doi.org/10.1155/2020/5694630