References
- Agioutantis, Z., Chatzopoulou, E. and Stavroulaki, M. (2000), "A numerical investigation of the effect of the interfacial zone in the concrete mixture under uniaxial compression: the case of the dilute limit", Cement Concrete Res., 30(7), 715-723. https://doi.org/10.1016/S0008-8846(00)00240-4
- ASM (2000), Metals Handbook, Vol. 8, Mechanical Testing & Evaluation.
- Bazant, Z.P. and Pfeiffer, P.A. (1987), "Determination of fracture energy from size effect and brittleness number", ACI Mater. J., 84, 463-480.
- CEB (1993), CEB-FIP Model Code 1990, Comite Euro-International du Beton, Redwood Books.
- Dong, A.A., Lu, Y. and Ma, G.W. (2006), "Numerical simulation study of strain rate effect on dynamic behaviour of concrete material", Proceeding of the Design and Analysis of Protective Structures (DAPS06), Singapore, 280-288.
- Eckardt, S., Hafner, S. and Konke, C. (2004), "Simulation of the fracture behaviour of concrete using continuum damage models at the mesoscale", Proceedings of ECCOMAS, Jyvaskyla.
- Gopalaratnam, V.S. and Shah, S.P. (1985), "Softening response of plain concrete in direct tension", ACI J., 82(3), 310-323.
- Grote, D.L., Park, S.W. and Zhou, M. (2001), "Dynamic behaviour of concrete at high strain rates and pressures: I. experimental characterization", Int. J. Impact. Eng., 25, 869-886. https://doi.org/10.1016/S0734-743X(01)00020-3
- Li, Q.M. and Meng, H. (2003), "About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test", Int. J. Impact Eng., 40, 343-360.
- LS-DYNA (2007), Keyword User's Manual, Version 971, Livermore Software Technology Corporation.
- Mindess, S., Young, J.F. and Darwin, D. (2003), Concrete, 2nd Edition, Prentice Hall.
- Nagai, K., Sato, Y. and Ueda, T. (2005), "Mesoscopic simulation of failure of mortar and concrete by 3D RBSM", J. Adv. Concrete Tech., 3(3), 385-402. https://doi.org/10.3151/jact.3.385
- Park, S.W., Xia, Q. and Zhou, M. (2001), "Dynamic behaviour of concrete at high strain rates and pressures: I. numerical simulation", Int. J. Impact. Eng., 25, 887-910. https://doi.org/10.1016/S0734-743X(01)00021-5
- Tedesco, J.W., Hughes, M.L. and Ross, C.A. (1994), "Numerical simulation of high strain rate concrete compression tests", Comput. Struct., 51(1), 65-77. https://doi.org/10.1016/0045-7949(94)90037-X
- Tu, Z.G. and Lu, Y. (2011), "Mesoscale modelling of concrete for static and dynamic response analysis, Part 1: Model development and implementation", Struct. Eng. Mech., 37(2), 197-213. https://doi.org/10.12989/sem.2011.37.2.197
- Ueda, M., Hasebe, N. and Sato, M. (1993), "Okuda H. Fracture mechanism of plain concrete under uniaxial tension". J Mater. Concrete Struct. Pavements, 19, 69-78. (in Japanese)
- van Vliet, M.R.A. and van Mier, J.G.M. (1996), "Experimental investigation of concrete fracture under uniaxial compression", Mech. Cohes. Fract. Mater., 1, 115-127. https://doi.org/10.1002/(SICI)1099-1484(199601)1:1<115::AID-CFM6>3.0.CO;2-U
- Zhou, X.Q. and Hao, H. (2008), "Modelling of compressive behaviour of concrete-like materials at high strain rate". Int. J. Solids Struct., 45, 4648-4661. https://doi.org/10.1016/j.ijsolstr.2008.04.002
Cited by
- 3D mesoscale finite element modelling of concrete vol.192, 2017, https://doi.org/10.1016/j.compstruc.2017.07.009
- Mesoscale modelling of concrete for static and dynamic response analysis -Part 1: model development and implementation vol.37, pp.2, 2011, https://doi.org/10.12989/sem.2011.37.2.197
- Analysis on the dynamic characteristics of RAC frame structures vol.64, pp.4, 2011, https://doi.org/10.12989/sem.2017.64.4.461
- Validation and Investigation on the Mechanical Behavior of Concrete Using a Novel 3D Mesoscale Method vol.12, pp.16, 2011, https://doi.org/10.3390/ma12162647
- Interfacial transition zones in concrete meso-scale models – Balancing physical realism and computational efficiency vol.293, pp.None, 2011, https://doi.org/10.1016/j.conbuildmat.2021.123332