DOI QR코드

DOI QR Code

Mesoscale modelling of concrete for static and dynamic response analysis -Part 1: model development and implementation

  • Tu, Zhenguo (IKM Ocean Design As) ;
  • Lu, Yong (Institute for Infrastructure and Environment, Joint Research Institute for Civil and Environmental Engineering, School of Engineering, The University of Edinburgh)
  • 투고 : 2009.10.19
  • 심사 : 2010.09.27
  • 발행 : 2011.01.25

초록

Concrete is a heterogeneous material exhibiting quasi-brittle behaviour. While homogenization of concrete is commonly accepted in general engineering applications, a detailed description of the material heterogeneity using a mesoscale model becomes desirable and even necessary for problems where drastic spatial and time variation of the stress and strain is involved, for example in the analysis of local damages under impact, shock or blast load. A mesoscale model can also assist in an investigation into the underlying mechanisms affecting the bulk material behaviour under various stress conditions. Extending from existing mesoscale model studies, where use is often made of specialized codes with limited capability in the material description and numerical solutions, this paper presents a mesoscale computational model developed under a general-purpose finite element environment. The aim is to facilitate the utilization of sophisticated material descriptions (e.g., pressure and rate dependency) and advanced numerical solvers to suit a broad range of applications, including high impulsive dynamic analysis. The whole procedure encompasses a module for the generation of concrete mesoscale structure; a process for the generation of the FE mesh, considering two alternative schemes for the interface transition zone (ITZ); and the nonlinear analysis of the mesoscale FE model with an explicit time integration approach. The development of the model and various associated computational considerations are discussed in this paper (Part 1). Further numerical studies using the mesoscale model for both quasi-static and dynamic loadings will be presented in the companion paper (Part 2).

키워드

참고문헌

  1. ANSYS Academic Research, V. 11.0.
  2. Attaerd, M.M. and Setunge, S. (1996), "Stress-strain relationship of confined and unconfined concrete", ACI Mater. J., 93(5), 432-442.
  3. Breitenbucher, R. and Ibuk, H. (2006), "Experimentally based investigation on the degradation-process of concrete under cyclic load", Mater. Struct., 39, 717-724.
  4. Cusatis, G., Bazant, Z.P. and Cedolin, L. (2003a), "Confinement-shear lattice model for concrete damage in tension and compression: 1. Theory", J. Eng. Mech., 129(12), 1439-1448. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1439)
  5. Cusatis, G., Bazant, Z.P. and Cedolin, L. (2003b), "Confinement-shear lattice model for concrete damage in tension and compression: 2. Computation and validation", J. Eng. Mech., 129(12), 1449-1458. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1449)
  6. De Schutter, G. and Taerwe, L. (1993), "Random particle model for concrete based on Delaunay triangulation", Mater. Struct., 26, 67-73. https://doi.org/10.1007/BF02472853
  7. Eckardt, S., Hafner, S. and Konke, C. (2004), "Simulation of the fracture behaviour of concrete using continuum damage models at the mesoscale", Proceedings of ECCOMAS, Jyvaskyla.
  8. Emery, J.M., Hochhalther, J.D. and Ingraffea, A.R. (2007), "Computational fracture mechanics of concrete structures: a retrospective through multiple lenses", FraMCos-6, Catania, Italy, June.
  9. Garboczi, E.J. and Bentz, D.P. (1997), "Analytical formulas for interfacial transition zone properties", J. Adv. Cement Base. Mater., 6, 99-108. https://doi.org/10.1016/S1065-7355(97)90016-X
  10. Grote, D.L., Park, S.W. and Zhou, M. (2001), "Dynamic behavior of concrete at high strain-rates and pressures: I. Experimental characterization", Int. J. Impact Eng., 25, 869-886. https://doi.org/10.1016/S0734-743X(01)00020-3
  11. Huet, C. (1993), "An integrated approach of concrete micromechanics", Micromechanics of Concrete and Cementious Composite, Presss Polytechniques et Universitaires Romandes, Lausanne.
  12. Imran, I. and Pantazopoulou, S.J. (1996), "Experimental study of plain concrete under triaxial stress", ACI Mater. J., 93(6), 589-601.
  13. Kwan, A.K.H., Wang, Z.M. and Chan, H.C. (1999), "Mesoscopic study of concrete II: nonlinear finite element analysis", Comput. Struct., 70, 545-56. https://doi.org/10.1016/S0045-7949(98)00178-3
  14. Leite, J.P.B., Slowik, V. and Mihashi, H. (2004), "Computer simulation of fracture process of concrete using mesolevel models of lattice structures", Cement Concrete Res., 34(6), 1025-1033. https://doi.org/10.1016/j.cemconres.2003.11.011
  15. Lilliu, G. and van Mier, J. (2003), "3D lattice type fracture model for concrete", Eng. Frac. Mech., 70, 927-941. https://doi.org/10.1016/S0013-7944(02)00158-3
  16. LS-DYNA (2007), Keyword User's Manual, Version 971, Livermore Software Technology Corporation.
  17. Lu, Y. (2009), "Modelling of concrete structures subjected to shock and blast loading: an overview and some recent studies", Struct. Eng. Mech., 32(2), 235-250. https://doi.org/10.12989/sem.2009.32.2.235
  18. Lu, Y. and Tu, Z.G. (2011), "Mesoscale modelling of concrete for general FE analysis - Part 2: Numerical investigation under static and dynamic loading conditions", Struct. Eng. Mech., 37(2), 215-231. https://doi.org/10.12989/sem.2011.37.2.215
  19. Malvar, L.J., Crawford, J.E. and Morrill, K.B. (2000), "K&C concrete material model release III-automated generation of material model input", K&C Technical Report TR-99-24-B1.
  20. Malvar, L.J., Crawford, J.E. and Wesevich, J.W. (1997), "A plasticity concrete material model for Dyna3D", Int. J. Impact. Eng., 9-10(19), 847-873.
  21. Martinez-Rueda, J.E. and Elnashai, A.S. (1997), "Confined concrete model under cyclic load", Mater. Struct., 30, 139-147. https://doi.org/10.1007/BF02486385
  22. Matlab (1999), The Language of Technical Computing, The Mathworks Inc.
  23. Nagai, K., Sato, Y. and Ueda, T. (2005), "Mesoscopic simulation of failure of mortar and concrete by 3D RBSM", J. Adv. Concrete Tech., 3(3), 385-402. https://doi.org/10.3151/jact.3.385
  24. Nemecek, J. and Bittnar, Z. (2004), "Experimental investigation and numerical simulation of post-peak behaviour and size effect of reinforced concrete columns", Mater. Struct., 37, 161-169. https://doi.org/10.1617/13995
  25. Pan, F.X., Zhu, J.S., Helminen, O.A. and Ramin, V. (2006), "Three point bending analysis of a mobile phone using LS-DYNA explicit integration method", Proceedings of the 9th International LS-DYNA Users Conference, 1331-1342.
  26. Rericha, P. (1986), "Optimum load time history for non-linear analysis using dynamic relaxation", Int. J. Numer. Meth. Eng., 23, 2313-2324. https://doi.org/10.1002/nme.1620231212
  27. Riedel, W., Thoma, K. and Hiermaier, S. (1999), "Penetration of reinforced concrete by BETA-B-500--numerical analysis using a new macroscopic concrete model for hydrocodes", Proceeding of the 9th International Symposium on Interaction of the Effect of Munitions with Structures, Berlin, Germany.
  28. Sadouki, H. and Wittmann, F.H. (1998), "On the analysis of the failure process in composite materials by numerical simulation", Mater. Sci. Eng., 104, 9-20.
  29. Schlangen, E. and van Mier, J. (1992), "Simple lattice model for numerical simulation of fracture of concrete materials and structures", Mater. Struct., 25, 534-942. https://doi.org/10.1007/BF02472449
  30. Shiu, W., Donze, F. and Daudeville, L. (2008), "Compaction process in concrete during missile impact: a DEM analysis", Comput. Concrete, 5(4), 329-342. https://doi.org/10.12989/cac.2008.5.4.329
  31. Shugar, T.A., Holland, T.J. and Malvar, L.J. (1992), "Applications of finite element technology to reinforced concrete explosive containment structures", 25th DoD Explosive Safety Seminar, Anaheim, CA.
  32. Tregger, N., Corr, D., Graham-Brady, L. and Shah, S. (2007), "Modeling mesoscale uncertainty for concrete in tension", Comput. Concrete, 4(5), 347-362. https://doi.org/10.12989/cac.2007.4.5.347
  33. Tu, Z.G. and Lu, Y. (2009), "Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations", Int. J. Impact. Eng., 36, 132-146. https://doi.org/10.1016/j.ijimpeng.2007.12.010
  34. van Mier, J. and van Vliet, M. (2003), "Influence of mircostructure of concrete on size/scale effects in tensile fracture", Eng. Fract. Mech., 70(16), 2281-2306. https://doi.org/10.1016/S0013-7944(02)00222-9
  35. Wang, Z.M., Kwan, A.K.H. and Chan, H.C. (1999), "Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh", Comput. Struct., 70, 533-544. https://doi.org/10.1016/S0045-7949(98)00177-1
  36. Wriggers, P. and Moftah, S.O. (2006), "Mesoscale models for concrete: Homogenisation and damage behaviour", Finite Elem. Anal. Des., 42, 623-636. https://doi.org/10.1016/j.finel.2005.11.008

피인용 문헌

  1. Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores vol.75, 2015, https://doi.org/10.1016/j.conbuildmat.2014.09.069
  2. 3D mesoscale finite element modelling of concrete vol.192, 2017, https://doi.org/10.1016/j.compstruc.2017.07.009
  3. Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data vol.46, 2012, https://doi.org/10.1016/j.ijimpeng.2012.01.010
  4. Combined Numerical-Statistical Analyses of Damage and Failure of 2D and 3D Mesoscale Heterogeneous Concrete vol.2015, 2015, https://doi.org/10.1155/2015/702563
  5. Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete vol.80, 2016, https://doi.org/10.1016/j.ijsolstr.2015.11.018
  6. A 3-D perspective of dynamic behaviour of heterogeneous solids vol.94, 2015, https://doi.org/10.1051/epjconf/20159404038
  7. Mesoscale modelling of concrete for static and dynamic response analysis -Part 2: numerical investigations vol.37, pp.2, 2011, https://doi.org/10.12989/sem.2011.37.2.215
  8. Modeling concrete like materials under sever dynamic pressures vol.76, 2015, https://doi.org/10.1016/j.ijimpeng.2014.09.009
  9. Monte Carlo simulations of mesoscale fracture of concrete with random aggregates and pores: a size effect study vol.80, 2015, https://doi.org/10.1016/j.conbuildmat.2015.02.002
  10. Monte Carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images vol.97, 2016, https://doi.org/10.1016/j.ijimpeng.2016.06.009
  11. STRUCTURAL RESPONSE TO HIGH IMPULSIVE LOADS: DYNAMIC EFFECTS AND ANALYSIS APPROACHES vol.07, pp.03, 2013, https://doi.org/10.1142/S1793431113500176
  12. Analysis on the dynamic characteristics of RAC frame structures vol.64, pp.4, 2011, https://doi.org/10.12989/sem.2017.64.4.461
  13. A mesoscale interface approach to modelling fractures in concrete for material investigation vol.165, pp.None, 2011, https://doi.org/10.1016/j.conbuildmat.2018.01.040
  14. Blast Load Analysis and Simulation of Unreinforced Concrete Masonry vol.1264, pp.None, 2011, https://doi.org/10.1088/1742-6596/1264/1/012008
  15. Validation and Investigation on the Mechanical Behavior of Concrete Using a Novel 3D Mesoscale Method vol.12, pp.16, 2011, https://doi.org/10.3390/ma12162647
  16. Mesoscopic modelling of concrete material under static and dynamic loadings: A review vol.278, pp.None, 2021, https://doi.org/10.1016/j.conbuildmat.2021.122419
  17. Five-phase sphere equivalent model of recycled concrete and numerical simulation based on the base force element method vol.38, pp.5, 2011, https://doi.org/10.1108/ec-08-2019-0352
  18. Interfacial transition zones in concrete meso-scale models – Balancing physical realism and computational efficiency vol.293, pp.None, 2011, https://doi.org/10.1016/j.conbuildmat.2021.123332