References
- ANSYS Academic Research, V. 11.0.
- Attaerd, M.M. and Setunge, S. (1996), "Stress-strain relationship of confined and unconfined concrete", ACI Mater. J., 93(5), 432-442.
- Breitenbucher, R. and Ibuk, H. (2006), "Experimentally based investigation on the degradation-process of concrete under cyclic load", Mater. Struct., 39, 717-724.
- Cusatis, G., Bazant, Z.P. and Cedolin, L. (2003a), "Confinement-shear lattice model for concrete damage in tension and compression: 1. Theory", J. Eng. Mech., 129(12), 1439-1448. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1439)
- Cusatis, G., Bazant, Z.P. and Cedolin, L. (2003b), "Confinement-shear lattice model for concrete damage in tension and compression: 2. Computation and validation", J. Eng. Mech., 129(12), 1449-1458. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1449)
- De Schutter, G. and Taerwe, L. (1993), "Random particle model for concrete based on Delaunay triangulation", Mater. Struct., 26, 67-73. https://doi.org/10.1007/BF02472853
- Eckardt, S., Hafner, S. and Konke, C. (2004), "Simulation of the fracture behaviour of concrete using continuum damage models at the mesoscale", Proceedings of ECCOMAS, Jyvaskyla.
- Emery, J.M., Hochhalther, J.D. and Ingraffea, A.R. (2007), "Computational fracture mechanics of concrete structures: a retrospective through multiple lenses", FraMCos-6, Catania, Italy, June.
- Garboczi, E.J. and Bentz, D.P. (1997), "Analytical formulas for interfacial transition zone properties", J. Adv. Cement Base. Mater., 6, 99-108. https://doi.org/10.1016/S1065-7355(97)90016-X
- Grote, D.L., Park, S.W. and Zhou, M. (2001), "Dynamic behavior of concrete at high strain-rates and pressures: I. Experimental characterization", Int. J. Impact Eng., 25, 869-886. https://doi.org/10.1016/S0734-743X(01)00020-3
- Huet, C. (1993), "An integrated approach of concrete micromechanics", Micromechanics of Concrete and Cementious Composite, Presss Polytechniques et Universitaires Romandes, Lausanne.
- Imran, I. and Pantazopoulou, S.J. (1996), "Experimental study of plain concrete under triaxial stress", ACI Mater. J., 93(6), 589-601.
- Kwan, A.K.H., Wang, Z.M. and Chan, H.C. (1999), "Mesoscopic study of concrete II: nonlinear finite element analysis", Comput. Struct., 70, 545-56. https://doi.org/10.1016/S0045-7949(98)00178-3
- Leite, J.P.B., Slowik, V. and Mihashi, H. (2004), "Computer simulation of fracture process of concrete using mesolevel models of lattice structures", Cement Concrete Res., 34(6), 1025-1033. https://doi.org/10.1016/j.cemconres.2003.11.011
- Lilliu, G. and van Mier, J. (2003), "3D lattice type fracture model for concrete", Eng. Frac. Mech., 70, 927-941. https://doi.org/10.1016/S0013-7944(02)00158-3
- LS-DYNA (2007), Keyword User's Manual, Version 971, Livermore Software Technology Corporation.
- Lu, Y. (2009), "Modelling of concrete structures subjected to shock and blast loading: an overview and some recent studies", Struct. Eng. Mech., 32(2), 235-250. https://doi.org/10.12989/sem.2009.32.2.235
- Lu, Y. and Tu, Z.G. (2011), "Mesoscale modelling of concrete for general FE analysis - Part 2: Numerical investigation under static and dynamic loading conditions", Struct. Eng. Mech., 37(2), 215-231. https://doi.org/10.12989/sem.2011.37.2.215
- Malvar, L.J., Crawford, J.E. and Morrill, K.B. (2000), "K&C concrete material model release III-automated generation of material model input", K&C Technical Report TR-99-24-B1.
- Malvar, L.J., Crawford, J.E. and Wesevich, J.W. (1997), "A plasticity concrete material model for Dyna3D", Int. J. Impact. Eng., 9-10(19), 847-873.
- Martinez-Rueda, J.E. and Elnashai, A.S. (1997), "Confined concrete model under cyclic load", Mater. Struct., 30, 139-147. https://doi.org/10.1007/BF02486385
- Matlab (1999), The Language of Technical Computing, The Mathworks Inc.
- Nagai, K., Sato, Y. and Ueda, T. (2005), "Mesoscopic simulation of failure of mortar and concrete by 3D RBSM", J. Adv. Concrete Tech., 3(3), 385-402. https://doi.org/10.3151/jact.3.385
- Nemecek, J. and Bittnar, Z. (2004), "Experimental investigation and numerical simulation of post-peak behaviour and size effect of reinforced concrete columns", Mater. Struct., 37, 161-169. https://doi.org/10.1617/13995
- Pan, F.X., Zhu, J.S., Helminen, O.A. and Ramin, V. (2006), "Three point bending analysis of a mobile phone using LS-DYNA explicit integration method", Proceedings of the 9th International LS-DYNA Users Conference, 1331-1342.
- Rericha, P. (1986), "Optimum load time history for non-linear analysis using dynamic relaxation", Int. J. Numer. Meth. Eng., 23, 2313-2324. https://doi.org/10.1002/nme.1620231212
- Riedel, W., Thoma, K. and Hiermaier, S. (1999), "Penetration of reinforced concrete by BETA-B-500--numerical analysis using a new macroscopic concrete model for hydrocodes", Proceeding of the 9th International Symposium on Interaction of the Effect of Munitions with Structures, Berlin, Germany.
- Sadouki, H. and Wittmann, F.H. (1998), "On the analysis of the failure process in composite materials by numerical simulation", Mater. Sci. Eng., 104, 9-20.
- Schlangen, E. and van Mier, J. (1992), "Simple lattice model for numerical simulation of fracture of concrete materials and structures", Mater. Struct., 25, 534-942. https://doi.org/10.1007/BF02472449
- Shiu, W., Donze, F. and Daudeville, L. (2008), "Compaction process in concrete during missile impact: a DEM analysis", Comput. Concrete, 5(4), 329-342. https://doi.org/10.12989/cac.2008.5.4.329
- Shugar, T.A., Holland, T.J. and Malvar, L.J. (1992), "Applications of finite element technology to reinforced concrete explosive containment structures", 25th DoD Explosive Safety Seminar, Anaheim, CA.
- Tregger, N., Corr, D., Graham-Brady, L. and Shah, S. (2007), "Modeling mesoscale uncertainty for concrete in tension", Comput. Concrete, 4(5), 347-362. https://doi.org/10.12989/cac.2007.4.5.347
- Tu, Z.G. and Lu, Y. (2009), "Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations", Int. J. Impact. Eng., 36, 132-146. https://doi.org/10.1016/j.ijimpeng.2007.12.010
- van Mier, J. and van Vliet, M. (2003), "Influence of mircostructure of concrete on size/scale effects in tensile fracture", Eng. Fract. Mech., 70(16), 2281-2306. https://doi.org/10.1016/S0013-7944(02)00222-9
- Wang, Z.M., Kwan, A.K.H. and Chan, H.C. (1999), "Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh", Comput. Struct., 70, 533-544. https://doi.org/10.1016/S0045-7949(98)00177-1
- Wriggers, P. and Moftah, S.O. (2006), "Mesoscale models for concrete: Homogenisation and damage behaviour", Finite Elem. Anal. Des., 42, 623-636. https://doi.org/10.1016/j.finel.2005.11.008
Cited by
- Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores vol.75, 2015, https://doi.org/10.1016/j.conbuildmat.2014.09.069
- 3D mesoscale finite element modelling of concrete vol.192, 2017, https://doi.org/10.1016/j.compstruc.2017.07.009
- Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data vol.46, 2012, https://doi.org/10.1016/j.ijimpeng.2012.01.010
- Combined Numerical-Statistical Analyses of Damage and Failure of 2D and 3D Mesoscale Heterogeneous Concrete vol.2015, 2015, https://doi.org/10.1155/2015/702563
- Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete vol.80, 2016, https://doi.org/10.1016/j.ijsolstr.2015.11.018
- A 3-D perspective of dynamic behaviour of heterogeneous solids vol.94, 2015, https://doi.org/10.1051/epjconf/20159404038
- Mesoscale modelling of concrete for static and dynamic response analysis -Part 2: numerical investigations vol.37, pp.2, 2011, https://doi.org/10.12989/sem.2011.37.2.215
- Modeling concrete like materials under sever dynamic pressures vol.76, 2015, https://doi.org/10.1016/j.ijimpeng.2014.09.009
- Monte Carlo simulations of mesoscale fracture of concrete with random aggregates and pores: a size effect study vol.80, 2015, https://doi.org/10.1016/j.conbuildmat.2015.02.002
- Monte Carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images vol.97, 2016, https://doi.org/10.1016/j.ijimpeng.2016.06.009
- STRUCTURAL RESPONSE TO HIGH IMPULSIVE LOADS: DYNAMIC EFFECTS AND ANALYSIS APPROACHES vol.07, pp.03, 2013, https://doi.org/10.1142/S1793431113500176
- Analysis on the dynamic characteristics of RAC frame structures vol.64, pp.4, 2011, https://doi.org/10.12989/sem.2017.64.4.461
- A mesoscale interface approach to modelling fractures in concrete for material investigation vol.165, pp.None, 2011, https://doi.org/10.1016/j.conbuildmat.2018.01.040
- Blast Load Analysis and Simulation of Unreinforced Concrete Masonry vol.1264, pp.None, 2011, https://doi.org/10.1088/1742-6596/1264/1/012008
- Validation and Investigation on the Mechanical Behavior of Concrete Using a Novel 3D Mesoscale Method vol.12, pp.16, 2011, https://doi.org/10.3390/ma12162647
- Mesoscopic modelling of concrete material under static and dynamic loadings: A review vol.278, pp.None, 2021, https://doi.org/10.1016/j.conbuildmat.2021.122419
- Five-phase sphere equivalent model of recycled concrete and numerical simulation based on the base force element method vol.38, pp.5, 2011, https://doi.org/10.1108/ec-08-2019-0352
- Interfacial transition zones in concrete meso-scale models – Balancing physical realism and computational efficiency vol.293, pp.None, 2011, https://doi.org/10.1016/j.conbuildmat.2021.123332