DOI QR코드

DOI QR Code

Beams affected by corrosion influence of reinforcement placement in the cracking

  • Ortega, Nestor F. (Engineering Department, Universidad Nacional del Sur) ;
  • Rivas, Irene E. (Engineering Faculty, Universidad Nacional del Centro de la Prov) ;
  • Aveldano, Raquel R. (Engineering Department, Universidad Nacional del Sur) ;
  • Peralta, Maria H. (Engineering Faculty, Universidad Nacional del Centro de la Prov)
  • 투고 : 2009.09.08
  • 심사 : 2010.09.25
  • 발행 : 2011.01.25

초록

The results of experimental and numerical investigations on reinforced concrete beams, with different longitudinal rebars affected by corrosive processes are presented in this paper. Different diameters and/or different distributions of longitudinal rebars were employed keeping constant the total section in each analyzed case, (maintaining a constant stirrup diameter and distribution). The rebars were subjected to accelerated corrosion in the experimental study. Electrochemical monitoring of the process, periodic measuring of the cover cracking and gravimetry of the rebars were performed through the test. Some building recommendations are obtained in order to be considered by designers of concrete structures. The numerical simulation was carried out through the application of the Finite Element Method (FEM), employing plane models, and using linear-elastic material model. The cracking process was associated with the evolution of the tensile stresses that were originated. This numerical methodology allows the monitoring of the mechanical behavior until the beginning of the cracking.

키워드

참고문헌

  1. Acosta, A.T. and Sagues, A. (1998), "Concrete cover cracking and corrosion expansion of embedded reinforced steel", Proceedings of the 3rd NACE Latin American Corrosion Congress, 1-15.
  2. ALGOR SOFTWARE PACKAGE (2007), V.20.3, Finite Element Modeling Software, Reference Division, Pittsburgh, Pennsylvania.
  3. Allampallewar, S.B. and Srividya, A. (2008), "Modeling cover cracking due to rebar corrosion in RC members", Struct. Eng. Mech., 30(6), 713-732. https://doi.org/10.12989/sem.2008.30.6.713
  4. Almusallam, A.A., Al-Gahtani, A.S., Aziz, A.R. and Rasheeduzzafart (1996), "Effect of reinforcement corrosion on bond strength", Constr. Buil. Mater., 10(2), 123-129. https://doi.org/10.1016/0950-0618(95)00077-1
  5. Alonso, C., Andrade, C., Rodriguez, J. and Diez, J.M. (1998), "Factors controlling cracking in concrete affected by reinforcement corrosion", Mater. Struct., 31, 435-441. https://doi.org/10.1007/BF02480466
  6. Al-Sulaimani, G.J., Kaleemullah, M., Basunbul, I.A. and Rasheeduzzafar, A. (1992), "Influence of corrosion and cracking on bond behaviour and strength of reinforced concrete members", ACI Struct. J., 220-231.
  7. Andrade, C., Alonso, C. and Molina, F. (1993), "Cover cracking as a function of bar corrosion: Part 1 - Experimental test", Mater. Struct., 26, 453-464. https://doi.org/10.1007/BF02472805
  8. ASTM C496-71 (1996), "Standard test method for splitting tensile strength of cylindrical concrete specimens", American Society for Testing and Materials.
  9. ASTM C 876 (1980), "Standard test method for half cell potential of reinforcing steel in concrete", American Society for Testing and Materials.
  10. ASTM G1-67 (2003), "Recommended practice for preparing, cleaning, and evaluating corrosion test specimens", American Society for Testing and Materials.
  11. Bhargava, K., Ghosh, A.K., Mori, Y. and Ramanujam, S. (2006), "Model for cover cracking due to rebar corrosion in RC structures", Eng. Struct., 28, 1093-1109. https://doi.org/10.1016/j.engstruct.2005.11.014
  12. Cairos, J., Du, Y. and Law, D. (2007), "Influence of corrosion on the friction characteristics of the steel/concrete interface", Construct. Build. Mater., 21, 190-197. https://doi.org/10.1016/j.conbuildmat.2005.06.054
  13. Casal, J., Diez Arenas, J.M., Rodriguez, J. and Ortega Basagoiti, L. (1996), "Comportamiento estructural de vigas de hormigon con armaduras corroidas", Hormigon y Acero, 200, 113-131.
  14. Du, Y.G., Clark, L.A. and Chan, A.H.C. (2005), "Residual capacity of corroded reinforcing bars", Mag. Concr. Res., 57(7), 135-147. https://doi.org/10.1680/macr.2005.57.3.135
  15. Du, Y.G., Chan, A.H.C. and Clark, L.A. (2006), "Finite Element Analysis of radial expansion of corroded reinforcement", Comput. Struct., 84, 917-929. https://doi.org/10.1016/j.compstruc.2006.02.012
  16. Hou, J. and Chung, D.L. (2000), "Effect of admixtures in concrete on the corrosion resistance of steel reinforced concrete", Corros. Sci., 42, 1489-1507. https://doi.org/10.1016/S0010-938X(99)00134-1
  17. Norma IRAM-IAS U 500-26 (1987), "Alambres de Acero Conformadas para Hormigon", Instituto Argentino de Racionalizacion de Materiales Armado.
  18. Norma IRAM-IAS U 500-528 (1987), "Barras de Acero Conformadas de Dureza Natural para Hormigon Armado", Instituto Argentino de Racionalizacion de Materiales.
  19. Poupard, O., L'Hostis, V., Catinaud S. and Petre-Lazar, I. (2006), "Corrosion damage diagnosis of a reinforced concrete beam after 40 years natural exposure in marine environment", Cement Concrete Res., 36, 504-620. https://doi.org/10.1016/j.cemconres.2005.11.004
  20. Rodriguez, J., Ortega, L.M. and Garcia, A.M. (1993), "Medida de la velocidad de corrosion de las armaduras en estructuras de hormigon, mediante un equipo desarrollado dentro del proyecto Eureka EU 401", Hormigon y Acero, 189, 79-91.
  21. Shayanfar, M.A., Ghalehnovi, M. and Safiey, A. (2007), "Corrosion effects on tension stiffening behavior of reinforced concrete", Comput. Concrete, 4(5), 403-424. https://doi.org/10.12989/cac.2007.4.5.403
  22. Vidal, T., Castel, A. and François, R. (2004), "Analyzing crack width to predict corrosion in reinforced concrete", Cement Concrete Res., 34, 165-174. https://doi.org/10.1016/S0008-8846(03)00246-1
  23. Zhu, X.Q. and Law, S.S. (2007), "A concrete-steel interface element for damage detection of reinforced concrete structures", Eng. Struct., 27, 3515-3524.

피인용 문헌

  1. Behavior of concrete elements subjected to corrosion in their compressed or tensed reinforcement vol.38, 2013, https://doi.org/10.1016/j.conbuildmat.2012.09.039
  2. Carbonation-Induced and Chloride-Induced Corrosion in Reinforced Concrete Structures vol.27, pp.9, 2015, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001209
  3. Symptom-based reliability analyses and performance assessment of corroded reinforced concrete structures vol.53, pp.6, 2015, https://doi.org/10.12989/sem.2015.53.6.1183