References
- Andersons, J. and Konig, M. (2004), "Dependence of fracture toughness of composite laminates on interface ply orientations and delamination growth direction", Compos. Sci. Technol., 64(13), 2139-2152. https://doi.org/10.1016/j.compscitech.2004.03.007
- ASTM D5528 (2001), Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites.
- Bathias, C. and Laksimi, A. (1985), "Delamination threshold and loading effect in fiber glass epoxy composite", ASTM Special Technical Publication, 217-237.
- Benzeggagh, M.L., Gong, X.J., Laksimi, A. and Roelandt, J.M. (1991), "On the Mode I delamination test and the importance of laminate lay-ups", Polym. Eng. Sci., 31(17), 1286-1292. https://doi.org/10.1002/pen.760311709
- Davidson, B.D., Krüger, R. and König M. (1996), "Effect of stacking sequence on energy release rate distributions in multi-directional DCB and ENF specimens", Eng. Fract. Mech., 55(4), 557-569. https://doi.org/10.1016/S0013-7944(96)00037-9
- Ewalds, H.L. and Wanhill, R.J.H. (1989), Fracture Mechanics, Edward Arnold, London.
- Gordnian K., Hadavinia H., Mason, P.J. and Madenci, E. (2008), "Determination of fracture energy and tensile cohesive strength in Mode I delamination of angle-ply laminated composites", Compos. Struct., 82(4), 577- 586. https://doi.org/10.1016/j.compstruct.2007.02.008
- Hamed, M.A., Nosier, A. and Farrahi, G.H. (2006) "Separation of delamination modes in composite beams with symmetric delaminations", Mater. Des., 27(10), 900-910. https://doi.org/10.1016/j.matdes.2005.03.006
- Hetenyi, M. (1946), Beams on Elastic Foundation, The university of Michigan press, USA.
- Hyer, M.W. and Knott, T.W. (1994), "Analysis of end-fitting induced strains in axially loaded glass-epoxy cylinders", Composite Structures for SMES Plants (NISTIR5024), (Eds. R.P. Reed and J.D. McColskey), Report to Defense Nuclear Agency from Materials Reliability Division, National Institute of Standards and Technology, Boulder, CO, NISTIR 5024.
- Irwin, G.R. and Kies, J.A. (1954), "Critical energy release rate analysis of fracture strength", Weld Research Supply, 33, 193-198.
- Kanninen, M.F. (1973), "An augmented double cantilever beam model for studying crack propagation and arrest", Int. J. Fract., 9(1), 83-91.
- Kondo, K. (1995), "Analysis of double cantilever beam specimen", Adv. Compos. Mater., 4(4), 355-366. https://doi.org/10.1163/156855195X00203
- Li, S., Wang, J. and Thouless, M.D. (2004), "The effects of shear on delamination in layered materials", J. Mech. Phys. Solids, 52(1), 193-214. https://doi.org/10.1016/S0022-5096(03)00070-X
- Olsson, R.A. (1992), "A simplified improved beam analysis of the DCB specimen", Compos. Sci. Technol., 43(4), 329-338. https://doi.org/10.1016/0266-3538(92)90056-9
- Ozdil, F. and Carlsson, L.A. (1999), "Beam analysis of angle-ply laminate DCB specimens", Compos. Sci. Technol., 59(2), 305-315. https://doi.org/10.1016/S0266-3538(98)00069-4
- Prasad, B.K.R. and Kumar, D.V.T.G.P. (2009), "Fracture behavior of multidirectional DCB specimen: Higherorder beam theories", J. Eng. Mech., 135(10), 1119-1128. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:10(1119)
- Reddy, J.N. (1999), Theory and Analysis of Elastic Plates, Taylor & Francis, Philadelphia.
- Shirima, L.M. and Giger, M.W. (1992), "Timoshenko beam element resting on two-parameter elastic foundation", J. Eng. Mech., 118(2), 280-295. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:2(280)
- Tsai, S.W. (1980), Introduction to Composite Materials, Technomic Publishing Company.
- Wang, C.M., Reddy, J.N. and Lee, K.H. (2000), Shear Deformable Beams and Plates, Elsevier science Ltd.
- Weatherby, J.R. (1982), "Evaluation of energy release rates in unidirectional double cantilevered beam fracture specimens", MSc Thesis, Texas A&M University.
- Whitney, J.M. (1985), "Stress analysis of the double cantilever beam specimen", Compos. Sci. Technol., 23(3), 201-219. https://doi.org/10.1016/0266-3538(85)90018-1
- Williams, J.G. (1989), "End corrections for orthotropic DCB specimens", Compos. Sci. Technol., 35(4), 367-376. https://doi.org/10.1016/0266-3538(89)90058-4
- Yavari, A., Sarkani, S. and Reddy, J.N. (2001), "Generalized solutions of beams with jump discontinuities on elastic foundations", Appl. Mecha., 71(9), 625-639. https://doi.org/10.1007/s004190100169
Cited by
- Exact Stiffness for Beams on Kerr-Type Foundation: The Virtual Force Approach vol.2013, 2013, https://doi.org/10.1155/2013/626287
- Analysis of the DCB test of angle-ply laminates including residual stresses 2017, https://doi.org/10.1016/j.tafmec.2017.03.010
- Influence of curved delamination front on toughness of multidirectional DCB specimens vol.94, pp.4, 2012, https://doi.org/10.1016/j.compstruct.2011.11.035
- Displacement-controlled crack growth in double cantilever beam specimen: A comparative study of different models vol.231, pp.15, 2017, https://doi.org/10.1177/0954406216642474
- Interlaminar fracture toughness of unidirectional DCB specimens: A novel theoretical approach vol.31, pp.1, 2012, https://doi.org/10.1016/j.polymertesting.2011.08.012
- Fracture analysis of finite length angle-ply composite double cantilever beam specimens pp.2041-2983, 2018, https://doi.org/10.1177/0954406218764518
- Nonlinear Winkler-based Beam Element with Improved Displacement Shape Functions vol.17, pp.1, 2011, https://doi.org/10.1007/s12205-013-1606-0
- Characterizing the damage mechanisms in mode II delamination in glass/epoxy composite using acoustic emission vol.67, pp.5, 2011, https://doi.org/10.12989/sem.2018.67.5.545
- Nonlinear flexibility-based beam element on Winkler-Pasternak foundation vol.24, pp.4, 2011, https://doi.org/10.12989/gae.2021.24.4.371
- Damage diagnosis and prognosis in composite double cantilever beam coupons by particle filtering and surrogate modelling vol.20, pp.3, 2021, https://doi.org/10.1177/1475921720960067
- Direct measurement of rate-dependent mode I and mode II traction-separation laws for cohesive zone modeling of laminated glass vol.279, pp.None, 2011, https://doi.org/10.1016/j.compstruct.2021.114759