DOI QR코드

DOI QR Code

Response of a completely free beam on a tensionless Pasternak foundation subjected to dynamic load

  • Celep, Z. (Department of Structural and Earthquake Engineering, Faculty of Civil Engineering, Istanbul Technical University) ;
  • Guler, K. (Department of Structural and Earthquake Engineering, Faculty of Civil Engineering, Istanbul Technical University) ;
  • Demir, F. (Department of Civil Engineering, Faculty of Civil Engineering, Suleyman Demirel University)
  • 투고 : 2010.04.24
  • 심사 : 2010.09.07
  • 발행 : 2011.01.10

초록

Static and dynamic responses of a completely free elastic beam resting on a two-parameter tensionless Pasternak foundation are investigated by assuming that the beam is symmetrically subjected to a uniformly distributed load and concentrated load at its middle. Governing equations of the problem are obtained and solved by paying attention on the boundary conditions of the problem including the concentrated edge foundation reaction in the case of complete contact and lift-off condition of the beam ina two-parameter foundation. The nonlinear governing equation of the problem is evaluated numerically by adopting an iterative procedure. Numerical results are presented in figures to demonstrate the non-linear behavior of the beam-foundation system for various values of the parameters of the problem comparatively by considering the static and dynamic loading cases.

키워드

참고문헌

  1. Celep, Z. (1984), "Dynamic response of a circular beam on a Wieghardt-type elastic foundation", Zeitschrift fur angewandte Mathematik and Mechanik, 64(7), 279-286. https://doi.org/10.1002/zamm.19840640707
  2. Celep, Z. (1988), "Circular plate on tensionless Winkler foundation", J. Eng. Mech., 114(10), 1723-1739. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:10(1723)
  3. Celep, Z. and Demir, F. (2005), "Circular rigid beam on a tensionless two-parameter elastic foundation", Zeitschrift fur angewandte Mathematik and Mechanik, 85(6), 431-439. https://doi.org/10.1002/zamm.200310183
  4. Celep, Z. and Demir, F. (2007), "Symmetrically loaded beam on a two-parameter tensionless foundation", Struct. Eng. Mech., 27(5), 555-574. https://doi.org/10.12989/sem.2007.27.5.555
  5. Celep, Z. and Genco lu, M. (2003), "Forced vibrations of rigid circular plate on a tensionless Winkler edge support", J. Sound Vib., 263(4), 945-953. https://doi.org/10.1016/S0022-460X(02)01472-4
  6. Celep, Z. and Guler, K. (2004), "Static and dynamic responses of a rigid circular plate on a tensionless Winkler foundation", J. Sound Vib., 276(1-2), 449-458. https://doi.org/10.1016/j.jsv.2003.10.062
  7. Celep, Z. and Guler, K. (2007), "Axisymmetric forced vibrations of an elastic free circular plate on a tensionless two-parameter foundation", J. Sound Vib., 301(3-5), 495-509. https://doi.org/10.1016/j.jsv.2006.09.029
  8. Celep, Z., Malaika, A. and Abu Hussein, M. (1989), "Force vibrations of a beam on a tensionless foundation", J. Sound Vib., 128(2), 235 246. https://doi.org/10.1016/0022-460X(89)90768-2
  9. Celep, Z. and Turhan, D. (1990), "Axisymmetric vibrations of circular plates on tensionless elastic foundations", J. Appl. Mech., 57(9), 677-681. https://doi.org/10.1115/1.2897076
  10. Celep, Z., Turhan, D. and Al-Zaid, R.Z. (1988), "Circular elastic plates on elastic unilateral edge supports", J. Appl. Mech., 55(3), 624-628. https://doi.org/10.1115/1.3125839
  11. Coskun, . (2003), "The response of a finite beam on a tensionless Pasternak foundation subjected to a harmonic load", Eur. J. Mech. A-Solid., 22(1), 151-161. https://doi.org/10.1016/S0997-7538(03)00011-1
  12. Coskun, . and Engin, H. (1999), "Non-linear vibrations of a beam on an elastic foundation", J. Sound Vib., 223(3), 335-354. https://doi.org/10.1006/jsvi.1998.1973
  13. Coskun, I., Engin, H. and Ozmutlu, A. (2008), "Response of a finite beam on a tensionless Pasternak foundation under symmetric and asymmetric loading", Struct. Eng. Mech., 30(1), 21-36. https://doi.org/10.12989/sem.2008.30.1.021
  14. Dempsey, J.P., Keer, L.M., Patel, N.B. and Glasser, M.L. (1984), "Contact between plates and unilateral supports", J. Appl. Mech., 51, 324-328. https://doi.org/10.1115/1.3167620
  15. Guler, K. (2004), "Circular elastic plate resting on tensionless Pasternak foundation", J. Eng. Mech.-ASCE, 130(10), 1251-1254. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:10(1251)
  16. Guler, K. and Celep, Z. (1995), "Static and dynamic responses of a circular plate on a tensionless elastic foundation", J. Sound Vib., 183(2), 185-195. https://doi.org/10.1006/jsvi.1995.0248
  17. Hong, T., Teng, J.G. and Luo, Y.F. (1999), "Axisymmetric shells and plates on tensionless elastic foundations", Int. J. Solids Struct., 36, 5277-5300. https://doi.org/10.1016/S0020-7683(98)00228-5
  18. Hsu, M.H. (2006), "Mechanical analysis of non-uniform beams resting on nonlinear elastic foundation by the differential quadrature method", Struct. Eng. Mech., 22(3), 279-292. https://doi.org/10.12989/sem.2006.22.3.279
  19. Kerr, A.D. (1964), "Kerr, Elastic and viscoelastic foundation models", J. Appl. Mech.-ASME, 31, 491-498. https://doi.org/10.1115/1.3629667
  20. Kerr, A.D. (1976), "On the derivation of well posed boundary value problems in structural mechanics", Int. J. Solids Struct., 12(1), 1-11. https://doi.org/10.1016/0020-7683(76)90069-X
  21. Kerr, A.D. and Coffin, D.W. (1991), "Beams on a two-dimensional Pasternak base subjected to loads that cause lift-off", Int. J. Solids Struct., 28(4), 413-422. https://doi.org/10.1016/0020-7683(91)90057-M
  22. Lin, L. and Adams, G.O. (1987), "Beams on tensionless elastic foundation", J. Eng. Mech.-ASCE, 113(4), 542-553. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:4(542)
  23. Ma, X., Butterworth, J.W. and Clifton, G.C. (2009), "Static analysis of an infinite beam resting on a tensionless Pasternak foundation", Eur. J. Mech. A-Solid., 28, 697-703. https://doi.org/10.1016/j.euromechsol.2009.03.003
  24. Silva, A.R.D., Silveira, R.A.M. and Gonçalves, P.B. (2001), "Numerical methods for analysis of plates on tensionless elastic foundations", Int. J. Solids Struct., 38, 2083-2100. https://doi.org/10.1016/S0020-7683(00)00154-2
  25. Tsai, N.C. and Westmann, R.E. (1967), "Beams on tensionless foundation", J. Eng. Mech.-ASCE, 93, 1-12.
  26. Weisman, Y. (1970), "On foundations that react in compression only, J. Appl. Mech.-ASME, 37(7), 1019-1030. https://doi.org/10.1115/1.3408653
  27. Weisman, Y. (1971), "Onset of separation between a beam and a tensionless elastic foundation under a moving load", Int. J. Mech. Sci., 13, 707-711. https://doi.org/10.1016/0020-7403(71)90070-1

피인용 문헌

  1. Static and dynamic stability analysis of an asymmetric sandwich beam resting on a variable pasternak foundation subjected to thermal gradient vol.51, pp.3, 2016, https://doi.org/10.1007/s11012-015-0229-6
  2. Nonlinear Equilibrium and Stability Analysis of Axially Loaded Piles Under Bilateral Contact Constraints vol.12, pp.2, 2015, https://doi.org/10.1590/1679-78251173
  3. A dual beam model for geosynthetic-reinforced granular fill on an elastic foundation vol.40, pp.21-22, 2016, https://doi.org/10.1016/j.apm.2016.06.003
  4. A numerical approach for equilibrium and stability analysis of slender arches and rings under contact constraints vol.50, pp.1, 2013, https://doi.org/10.1016/j.ijsolstr.2012.09.015
  5. New Method for a Beam Resting on a Tensionless and Elastic-Plastic Foundation Subjected to Arbitrarily Complex Loads vol.16, pp.4, 2016, https://doi.org/10.1061/(ASCE)GM.1943-5622.0000577
  6. Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load vol.331, pp.10, 2012, https://doi.org/10.1016/j.jsv.2011.12.036
  7. Dynamic analysis of semi-rigidly connected and partially embedded piles via the method of reverberation-ray matrix vol.42, pp.2, 2012, https://doi.org/10.12989/sem.2012.42.2.269
  8. Stability of an asymmetric tapered sandwich beam resting on a variable Pasternak foundation subjected to a pulsating axial load with thermal gradient vol.140, 2016, https://doi.org/10.1016/j.compstruct.2016.01.010
  9. Comparative dynamic analysis of axially loaded beams on modified Vlasov foundation vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.969
  10. Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads vol.44, pp.2, 2012, https://doi.org/10.12989/sem.2012.44.2.139
  11. Nonlinear dynamic analysis for coupled vehicle-bridge system with harmonic excitation vol.52, pp.9, 2017, https://doi.org/10.1007/s11012-016-0577-x
  12. A contact element for dynamic analysis of beams to a moving oscillator on tensionless elastic foundation vol.8, pp.4, 2016, https://doi.org/10.1007/s40091-016-0135-8
  13. Stability Study of a Sandwich Beam with Asymmetric and Non-uniform Configuration Supported Viscoelastically Under Variable Temperature Grade vol.7, pp.2, 2011, https://doi.org/10.1007/s42417-019-00087-3
  14. Elastic and viscoelastic foundations: a review on linear and nonlinear vibration modeling and applications vol.97, pp.1, 2019, https://doi.org/10.1007/s11071-019-04977-9
  15. The Scheme to Determine the Convergence Term of the Galerkin Method for Dynamic Analysis of Sandwich Plates on Nonlinear Foundations vol.34, pp.1, 2011, https://doi.org/10.1007/s10338-020-00208-6
  16. Stability of an exponentially tapered asymmetric sandwich beam placing on a variable Pasternak Foundation with variable temperature gradient vol.52, pp.3, 2021, https://doi.org/10.1177/0957456520972378