참고문헌
- Celep, Z. (1984), "Dynamic response of a circular beam on a Wieghardt-type elastic foundation", Zeitschrift fur angewandte Mathematik and Mechanik, 64(7), 279-286. https://doi.org/10.1002/zamm.19840640707
- Celep, Z. (1988), "Circular plate on tensionless Winkler foundation", J. Eng. Mech., 114(10), 1723-1739. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:10(1723)
- Celep, Z. and Demir, F. (2005), "Circular rigid beam on a tensionless two-parameter elastic foundation", Zeitschrift fur angewandte Mathematik and Mechanik, 85(6), 431-439. https://doi.org/10.1002/zamm.200310183
- Celep, Z. and Demir, F. (2007), "Symmetrically loaded beam on a two-parameter tensionless foundation", Struct. Eng. Mech., 27(5), 555-574. https://doi.org/10.12989/sem.2007.27.5.555
- Celep, Z. and Genco lu, M. (2003), "Forced vibrations of rigid circular plate on a tensionless Winkler edge support", J. Sound Vib., 263(4), 945-953. https://doi.org/10.1016/S0022-460X(02)01472-4
- Celep, Z. and Guler, K. (2004), "Static and dynamic responses of a rigid circular plate on a tensionless Winkler foundation", J. Sound Vib., 276(1-2), 449-458. https://doi.org/10.1016/j.jsv.2003.10.062
- Celep, Z. and Guler, K. (2007), "Axisymmetric forced vibrations of an elastic free circular plate on a tensionless two-parameter foundation", J. Sound Vib., 301(3-5), 495-509. https://doi.org/10.1016/j.jsv.2006.09.029
- Celep, Z., Malaika, A. and Abu Hussein, M. (1989), "Force vibrations of a beam on a tensionless foundation", J. Sound Vib., 128(2), 235 246. https://doi.org/10.1016/0022-460X(89)90768-2
- Celep, Z. and Turhan, D. (1990), "Axisymmetric vibrations of circular plates on tensionless elastic foundations", J. Appl. Mech., 57(9), 677-681. https://doi.org/10.1115/1.2897076
- Celep, Z., Turhan, D. and Al-Zaid, R.Z. (1988), "Circular elastic plates on elastic unilateral edge supports", J. Appl. Mech., 55(3), 624-628. https://doi.org/10.1115/1.3125839
- Coskun, . (2003), "The response of a finite beam on a tensionless Pasternak foundation subjected to a harmonic load", Eur. J. Mech. A-Solid., 22(1), 151-161. https://doi.org/10.1016/S0997-7538(03)00011-1
- Coskun, . and Engin, H. (1999), "Non-linear vibrations of a beam on an elastic foundation", J. Sound Vib., 223(3), 335-354. https://doi.org/10.1006/jsvi.1998.1973
- Coskun, I., Engin, H. and Ozmutlu, A. (2008), "Response of a finite beam on a tensionless Pasternak foundation under symmetric and asymmetric loading", Struct. Eng. Mech., 30(1), 21-36. https://doi.org/10.12989/sem.2008.30.1.021
- Dempsey, J.P., Keer, L.M., Patel, N.B. and Glasser, M.L. (1984), "Contact between plates and unilateral supports", J. Appl. Mech., 51, 324-328. https://doi.org/10.1115/1.3167620
- Guler, K. (2004), "Circular elastic plate resting on tensionless Pasternak foundation", J. Eng. Mech.-ASCE, 130(10), 1251-1254. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:10(1251)
- Guler, K. and Celep, Z. (1995), "Static and dynamic responses of a circular plate on a tensionless elastic foundation", J. Sound Vib., 183(2), 185-195. https://doi.org/10.1006/jsvi.1995.0248
- Hong, T., Teng, J.G. and Luo, Y.F. (1999), "Axisymmetric shells and plates on tensionless elastic foundations", Int. J. Solids Struct., 36, 5277-5300. https://doi.org/10.1016/S0020-7683(98)00228-5
- Hsu, M.H. (2006), "Mechanical analysis of non-uniform beams resting on nonlinear elastic foundation by the differential quadrature method", Struct. Eng. Mech., 22(3), 279-292. https://doi.org/10.12989/sem.2006.22.3.279
- Kerr, A.D. (1964), "Kerr, Elastic and viscoelastic foundation models", J. Appl. Mech.-ASME, 31, 491-498. https://doi.org/10.1115/1.3629667
- Kerr, A.D. (1976), "On the derivation of well posed boundary value problems in structural mechanics", Int. J. Solids Struct., 12(1), 1-11. https://doi.org/10.1016/0020-7683(76)90069-X
- Kerr, A.D. and Coffin, D.W. (1991), "Beams on a two-dimensional Pasternak base subjected to loads that cause lift-off", Int. J. Solids Struct., 28(4), 413-422. https://doi.org/10.1016/0020-7683(91)90057-M
- Lin, L. and Adams, G.O. (1987), "Beams on tensionless elastic foundation", J. Eng. Mech.-ASCE, 113(4), 542-553. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:4(542)
- Ma, X., Butterworth, J.W. and Clifton, G.C. (2009), "Static analysis of an infinite beam resting on a tensionless Pasternak foundation", Eur. J. Mech. A-Solid., 28, 697-703. https://doi.org/10.1016/j.euromechsol.2009.03.003
- Silva, A.R.D., Silveira, R.A.M. and Gonçalves, P.B. (2001), "Numerical methods for analysis of plates on tensionless elastic foundations", Int. J. Solids Struct., 38, 2083-2100. https://doi.org/10.1016/S0020-7683(00)00154-2
- Tsai, N.C. and Westmann, R.E. (1967), "Beams on tensionless foundation", J. Eng. Mech.-ASCE, 93, 1-12.
- Weisman, Y. (1970), "On foundations that react in compression only, J. Appl. Mech.-ASME, 37(7), 1019-1030. https://doi.org/10.1115/1.3408653
- Weisman, Y. (1971), "Onset of separation between a beam and a tensionless elastic foundation under a moving load", Int. J. Mech. Sci., 13, 707-711. https://doi.org/10.1016/0020-7403(71)90070-1
피인용 문헌
- Static and dynamic stability analysis of an asymmetric sandwich beam resting on a variable pasternak foundation subjected to thermal gradient vol.51, pp.3, 2016, https://doi.org/10.1007/s11012-015-0229-6
- Nonlinear Equilibrium and Stability Analysis of Axially Loaded Piles Under Bilateral Contact Constraints vol.12, pp.2, 2015, https://doi.org/10.1590/1679-78251173
- A dual beam model for geosynthetic-reinforced granular fill on an elastic foundation vol.40, pp.21-22, 2016, https://doi.org/10.1016/j.apm.2016.06.003
- A numerical approach for equilibrium and stability analysis of slender arches and rings under contact constraints vol.50, pp.1, 2013, https://doi.org/10.1016/j.ijsolstr.2012.09.015
- New Method for a Beam Resting on a Tensionless and Elastic-Plastic Foundation Subjected to Arbitrarily Complex Loads vol.16, pp.4, 2016, https://doi.org/10.1061/(ASCE)GM.1943-5622.0000577
- Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load vol.331, pp.10, 2012, https://doi.org/10.1016/j.jsv.2011.12.036
- Dynamic analysis of semi-rigidly connected and partially embedded piles via the method of reverberation-ray matrix vol.42, pp.2, 2012, https://doi.org/10.12989/sem.2012.42.2.269
- Stability of an asymmetric tapered sandwich beam resting on a variable Pasternak foundation subjected to a pulsating axial load with thermal gradient vol.140, 2016, https://doi.org/10.1016/j.compstruct.2016.01.010
- Comparative dynamic analysis of axially loaded beams on modified Vlasov foundation vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.969
- Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads vol.44, pp.2, 2012, https://doi.org/10.12989/sem.2012.44.2.139
- Nonlinear dynamic analysis for coupled vehicle-bridge system with harmonic excitation vol.52, pp.9, 2017, https://doi.org/10.1007/s11012-016-0577-x
- A contact element for dynamic analysis of beams to a moving oscillator on tensionless elastic foundation vol.8, pp.4, 2016, https://doi.org/10.1007/s40091-016-0135-8
- Stability Study of a Sandwich Beam with Asymmetric and Non-uniform Configuration Supported Viscoelastically Under Variable Temperature Grade vol.7, pp.2, 2011, https://doi.org/10.1007/s42417-019-00087-3
- Elastic and viscoelastic foundations: a review on linear and nonlinear vibration modeling and applications vol.97, pp.1, 2019, https://doi.org/10.1007/s11071-019-04977-9
- The Scheme to Determine the Convergence Term of the Galerkin Method for Dynamic Analysis of Sandwich Plates on Nonlinear Foundations vol.34, pp.1, 2011, https://doi.org/10.1007/s10338-020-00208-6
- Stability of an exponentially tapered asymmetric sandwich beam placing on a variable Pasternak Foundation with variable temperature gradient vol.52, pp.3, 2021, https://doi.org/10.1177/0957456520972378