References
- Abrate, S. (2006), "Free vibration, buckling, and static deflections of functionally graded plates", Compos. Sci. Technol., 66(14), 2383-2394. https://doi.org/10.1016/j.compscitech.2006.02.032
- Bao, G. and Wang, L. (1995), "Multiple cracking in functionally graded ceramic/metal coatings", Int. J. Solids Struct., 32(19), 2853-2871. https://doi.org/10.1016/0020-7683(94)00267-Z
- Bathe, K. J. (1982), Finite Element Procedures in Engineering Analysis, Englewood Cliffs, New Jersey: Prentice-Hall.
- Benatta, M.A., Mechab, I., Tounsi, A. and Adda Bedia, E.A. (2008), "Static analysis of functionally graded short beams including warping and shear deformation effects", Comput. Mater. Sci., 44(2), 465-773.
- Benatta, M.A, Tounsi A., Mechab I. and Bachir Bouiadjra M. (2009), "Mathematical solution for bending of short hybrid composite beams with variable fibers spacing", Appl. Math. Comput., 212(2), 337-348. https://doi.org/10.1016/j.amc.2009.02.030
- Beskos, D. E. (1987), "Boundary element methods in dynamic analysis", Appl. Mech Rev., 40(1), 1-23. https://doi.org/10.1115/1.3149529
- Beskos, D. E. (1979), "Dynamics and stability of plane trusses with gusset plates", Comput. & Struct., 10(5), 785-795. https://doi.org/10.1016/0045-7949(79)90042-7
- Beskos, D. E. and Narayanan, G. V. (1983), "Dynamic response of frameworks by numerical Laplace transforms",Comput. Meth. Appl. Mech. Eng., 37(3), 289-307. https://doi.org/10.1016/0045-7825(83)90080-4
- Caruntu, D. (2000), "On nonlinear vibration of non-uniform beam with rectangular cross-section and parabolic thickness variation", Solid Mechanics and its Applications, 73.Kluwer Academic Publishers, Dordrecht, Boston,London, 109-118.
- Chung, Y.L. and Chi, S.H. (2001), "The residual stress of functionally graded materials", Journal of the Chinese Institute of Civil and Hydraulic Engineering., 13, 1-9.
- Chu, C. H. and Pilkey, D. W. (1979), "Transient analysis of structural members by the CSDT Riccati transfer matrix method", Comput. & Struct., 10(4), 599-611. https://doi.org/10.1016/0045-7949(79)90004-X
- Cranch, E.T. and Adler, A.A. (1956), "Bending vibration of variable section beams", ASME J. Appl. Mech., 23, 103-108.
- Datta, A.K. and Sil, S.N. (1996), "An analysis of free undamped vibration of beams of varying cross-section", Comput. & Struct., 59(3), 479-483. https://doi.org/10.1016/0045-7949(95)60270-4
- Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", ASME J. Appl. Mech., 50(3), 609-614. https://doi.org/10.1115/1.3167098
- Elishako, I. and Johnson, V. (2005), "Apparently the first closed-form solution of vibrating inhomogeneous beam with a tip mass", J. Sound Vib., 286(4-5), 1057-1066. https://doi.org/10.1016/j.jsv.2005.01.050
- Elishako, I. (2005), Eigenvalues of Inhomogeneous Structures: Unusual Closed-Form Solutions, CRC Press, Boca Raton.
- Jang, S.K. and Bert, C.W. (1989b), "Free vibration of stepped beams: Higher mode frequencies and effects of steps on frequencies", J. Sound Vib., 32, 164-168.
- Gorman, D.J. (1975), Free Vibration Analysis of Beams and Shafts, Wiley, New York.
- Jabbari, M., Vaghari, A.R., Bahtui, A. and Eslami, M.R. (2008), "Exact solution for asymmetric transient thermal and mechanical stresses in FGM hollow cylinders with heat source", Struct. Eng. Mech., 29, 244-254.
- Jang, S.K. and Bert, C.W. (1989a), "Free vibration of stepped beams: Exact and numerical solutions", J. Sound Vib., 30, 342-346.
- Guven, U., Celik, A., Baykara, C. (2004), "On transverse vibrations of functionally graded polar orthotropic rotating solid disk with variable thickness and constant radial stress", J. Reinf. Plast. Comp., 23(12), 1279-1284. https://doi.org/10.1177/0731684404035600
- Huang, X.L. and Shen, H.S. (2004), "Nonlinear vibration and dynamic response of functionally graded plates in thermal environment", Int. J. Solids Struct., 41(9-10), 2403-27. https://doi.org/10.1016/j.ijsolstr.2003.11.012
- Just, D. J. (1977), "Plane frameworks of tapered box and I-section", ASCE J. Struct. Eng., 103, 71-86.
- Laura, P.A.A., Gutierrez, R.H. and Rossi, R.E. (1996), "Free vibration of beams of bi-linearly varying thickness", Ocean Engineering., 23, 1-6. https://doi.org/10.1016/0029-8018(95)00029-K
- Lee, S. Y., Ke, H. Y. and Kuo, Y. H. (1990), "Analysis of non-uniform beam vibration", J. Sound Vib., 142, 15-29. https://doi.org/10.1016/0022-460X(90)90580-S
- Lee, Y.D. and Erdogan, F. (1995), "Residual/thermal stress in FGM and laminated thermal barrier coatings", Int.J. Fract., 69(2), 145-165. https://doi.org/10.1007/BF00035027
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
- Mushelishvili, N. I. (1953), Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen.
- Ovunk, B. A. (1974), "Dynamics of frameworks by continuous mass methods", Comput. & Struct., 4(5), 1061-1089. https://doi.org/10.1016/0045-7949(74)90024-8
- Pradhan, S.C., Sarkar, A. (2009), "Analyses of tapered fgm beams with nonlocal theory", Struct. Eng. Mech., 32, 811-833. https://doi.org/10.12989/sem.2009.32.6.811
- Pradhan, S.C. and Phadikar, J.K. (2009), "Bending, buckling and vibration analyses of nonhomogeneous nanotubes using GDQ and nonlocal elasticity theory", Struct. Eng. Mech., 33, 193-213. https://doi.org/10.12989/sem.2009.33.2.193
-
Sallai, B.O., Tounsi, A., Mechab, I., Bachir Bouiadjra, M., Meradjah, M. and Adda Bedia, E.A. (2009), "A theoretical analysis of flexional bending of
$Al/Al_{2}O_{3}$ S-FGM thick beams", Comput. Mater. Sci., 44, 1344-1350. https://doi.org/10.1016/j.commatsci.2008.09.001 - Sanjay Anandrao, K., Gupta, R.K., Ramchandran, P. and Venkateswara Rao, G. (2010), "Thermal post-buckling analysis of uniform slender functionally graded material beams", Struct. Eng. Mech., 36, 545-560. https://doi.org/10.12989/sem.2010.36.5.545
- Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0
- Simsek, M. and Kocaturk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90(4), 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024
- Simsek, M. (2010), "Vibration analysis of a functionally graded beam under a moving mass by using different beam theories", Compos. Struct., 92(4), 904-917. https://doi.org/10.1016/j.compstruct.2009.09.030
- Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nuclear Engineering and Design, 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013
- Simsek, M. (2010), "Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load", Compos. Struct., 92(10), 2532-2546. https://doi.org/10.1016/j.compstruct.2010.02.008
- Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Materials and Design., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015
- Tong, X., Tabarrok, B. and Yeh, K.Y. (1995), "Vibration analysis of Timoshenko beams with non-homogeneity and varying cross-section", J. Sound Vib., 186(5), 821-835. https://doi.org/10.1006/jsvi.1995.0490
- Toso, M. and Baz, A. (2004), "Wave propagation in periodic shells with tapered wall thickness and changing material properties", Shock Vib., 11(3-4), 411-432. https://doi.org/10.1155/2004/456982
- Yang, B., Ding, H.J. and Chen, W.Q. (2008), "Elasticity solutions for a uniformly loaded annular plate of functionally graded materials", Struct. Eng. Mech., 30, 501-512. https://doi.org/10.12989/sem.2008.30.4.501
- Yas, M.H., Sobhani Aragh, B. and Heshmati, M. (2011), "Three-dimensional free vibration analysis of functionally graded fiber reinforced cylindrical panels using differential quadrature method", Struct. Eng. Mech.,37, 301-313.
- Yeh, K. Y. (1979), "General solutions on certain problems of elasticity with nonhomogeneity and variable thickness, part IV: bending, buckling, and free vibration of nonhomogeneous variable thickness beams", Journal of Lanzhou University., 1, 133-157.
- Yeh, K. Y., Tong, X., Ji and Z. Y. (1992), "General analytic solution of dynamic response of beams with nonhomogeneity and variable cross section", Appl. Math. Mech., 13(9), 779-791. https://doi.org/10.1007/BF02481798
- Ying, J., Lu, C.F. and Chen and W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004
- Zhong, Z. and Yu, T. (2007), "Analytical solution of a cantilever functionally graded beam", Compos. Sci. Technol., 67(3-4), 481-488. https://doi.org/10.1016/j.compscitech.2006.08.023
Cited by
- Large-amplitude vibration of sigmoid functionally graded thin plates with porosities vol.119, 2017, https://doi.org/10.1016/j.tws.2017.08.012
- Free vibration analysis of exponential functionally graded beams with a single delamination vol.59, 2014, https://doi.org/10.1016/j.compositesb.2013.10.026
- Analytical study of nonlinear vibration of oscillators with damping vol.9, pp.1, 2015, https://doi.org/10.12989/eas.2015.9.1.221
- Nonlinear cylindrical bending analysis of E-FGM plates with variable thickness vol.16, pp.4, 2014, https://doi.org/10.12989/scs.2014.16.4.339
- Flexural Wave Propagation Analysis of Embedded S-FGM Nanobeams Under Longitudinal Magnetic Field Based on Nonlocal Strain Gradient Theory vol.42, pp.5, 2017, https://doi.org/10.1007/s13369-016-2266-4
- Numerical analysis of FGM plates with variable thickness subjected to thermal buckling vol.19, pp.3, 2015, https://doi.org/10.12989/scs.2015.19.3.679
- Vibration analysis of functionally graded material (FGM) grid systems vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.395
- Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions vol.36, 2014, https://doi.org/10.1016/j.ast.2014.04.005
- Buckling analysis of functionally graded material grid systems vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.877
- High conservative nonlinear vibration equations by means of energy balance method vol.11, pp.1, 2016, https://doi.org/10.12989/eas.2016.11.1.129
- Vibration characteristics of moving sigmoid functionally graded plates containing porosities 2018, https://doi.org/10.1007/s10999-017-9385-2
- Scale-dependent effects on wave propagation in magnetically affected single/double-layered compositionally graded nanosize beams 2017, https://doi.org/10.1080/17455030.2017.1346331
- Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM vol.17, pp.5, 2014, https://doi.org/10.12989/scs.2014.17.5.753
- Nonlinear oscillations of sigmoid functionally graded material plates moving in longitudinal direction vol.38, pp.11, 2017, https://doi.org/10.1007/s10483-017-2277-9
- A novel approximate solution for nonlinear problems of vibratory systems vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.1039
- Modeling and analysis of functionally graded sandwich beams: A review pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1447178
- Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials vol.27, pp.6, 2011, https://doi.org/10.12989/scs.2018.27.6.777
- Free vibration of imperfect sigmoid and power law functionally graded beams vol.30, pp.6, 2019, https://doi.org/10.12989/scs.2019.30.6.603
- Investigating Instability Regions of Harmonically Loaded Refined Shear Deformable Inhomogeneous Nanoplates vol.43, pp.3, 2011, https://doi.org/10.1007/s40997-018-0215-4
- Static stability analysis of axially functionally graded tapered micro columns with different boundary conditions vol.33, pp.1, 2019, https://doi.org/10.12989/scs.2019.33.1.133
- Free vibration of AFG beams with elastic end restraints vol.33, pp.3, 2011, https://doi.org/10.12989/scs.2019.33.3.403
- Natural frequency analysis of sigmoid functionally graded sandwich beams in the framework of high order shear deformation theory vol.276, pp.None, 2011, https://doi.org/10.1016/j.compstruct.2021.114564