References
- Allman, D. J., (1984), "A compatible triangular element including vertex rotations for plane elasticity problems", Comp. Struct., 19(1-2), 1-8. https://doi.org/10.1016/0045-7949(84)90197-4
- Bergan, P. G. And Felippa, C. A. (1985), "A triangular membrane element with rotational degrees of freedom", Comp. Methods Appl. Mech. Eng., 50(1), 25-69. https://doi.org/10.1016/0045-7825(85)90113-6
- Chelladurai T., Shastry B. P., Rao, G. V., (1984), "Effect of Fibre Orientation on the Stability of Orthotropic Rectangular Plates", Fibre Science and Technology, 20(2), 121-134. https://doi.org/10.1016/0015-0568(84)90004-6
- Choi, C. K., and Lee, W. H. (1996), "Versatile variable-node flat-shell element", J. Eng. Mech., 122(5), 432-441. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:5(432)
- Civalek O, Korkmaz A., Demir C., (2010), "Discrete singular convolution approach for buckling analysis of rectangularKirchhoff plates subjected to compressive loads on two-opposite edges", Adv. Eng. Softw., 41(4), 557-560. https://doi.org/10.1016/j.advengsoft.2009.11.002
- Civalek, O. (2004), "Application of Differential Quadrature (DQ) and Harmonic Differential Quadrature (HDQ) For Buckling Analysis of Thin Isotropic Plates and Elastic Columns", Eng. Struct., 26(2), 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005
- Gurses, M., Civalek, O., Korkmaz, A. and Ersoy, H. (2009), "Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory", Int. J. Numer. Meth. Eng., 79(3), 290-313. https://doi.org/10.1002/nme.2553
- Cook, R. D., (1986), "On the Allman triangle and a related quadrilateral element", Comp. Struct., 22(6), 1065-1067. https://doi.org/10.1016/0045-7949(86)90167-7
- Darilmaz, K. (2005), "An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates", Struct. Eng. Mech., 19(2), 199-215. https://doi.org/10.12989/sem.2005.19.2.199
- Darilmaz, K. (2007), "An assumed-stress hybrid element for static and free vibration analysis of folded plates", Struct. Eng. Mech., 25(4), 405-421. https://doi.org/10.12989/sem.2007.25.4.405
- Darilmaz, K. (2009), "An assumed-stress hybrid element for modeling of plates with shear deformations on elastic foundation", Struct. Eng. Mech., 33(5), 573-588. https://doi.org/10.12989/sem.2009.33.5.573
- Dhananjaya, H.R., Pandey, P.C. and Nagabhushanam, J. (2009), "New eight node serendipity quadrilateral plate bending element for thin and moderately thick plates using Integrated Force Method". Struct. Eng. Mech.33(4)485-502. https://doi.org/10.12989/sem.2009.33.4.485
- Durvasula, S. (1971) "Buckling of simply supported skew plates" J. Engrg. Mech. Div., ASCE, 97(3), 967-979.
- Edwardes, R. J., and Kabaila, A. P, (1978) "Buckling of simply supported skew plates", Int. J. Numer. Methods Engrg., 12(5), 779-785. https://doi.org/10.1002/nme.1620120504
- Ibrahimbegovic, A., Taylor, R. L. and Wison, E. L., (1990), "A robust quadrilateral membrane finite element with drilling degrees of freedom", Int. J. Numer. Methods Eng., 30(3), 445-457. https://doi.org/10.1002/nme.1620300305
- Lee, S.Y. and Park, T. (2009), "Free vibration of laminated composite skew plates with central cutouts". Struct. Eng. Mech. 31(5)587-603. https://doi.org/10.12989/sem.2009.31.5.587
- MacNeal, R. H. And Harder, R. L., (1988), "A refined four-noded membrane element with rotational degrees of freedom", Comp. Struct., 28(1), 75-84. https://doi.org/10.1016/0045-7949(88)90094-6
- Pian T. H. H., (1964), "Derivation of element stiffness matrices by assumed stress distributions", AIAA J., 12, 1333-1336.
- Shi G., (1990),"Flexural Vibration and buckling analysis of orthotropic plates by the boundary element method", Int. J. Solids Structures, 26(12), 1351-1370. https://doi.org/10.1016/0020-7683(90)90083-8
- Thangam Babu P.V., Reddy D. V., (1978) "Stability analysis of skew orthotropic plates by the finite strip method", Computers & Structures, 8(5), 599-607. https://doi.org/10.1016/0045-7949(78)90097-4
- Wang, C. M. ; Liew, K.M.; Alwis, W.A.M. (1992), "Buckling of skew plates and corner condition for simply supported edges", Journal Of Engineering Mechanics-ASCE, 118(4), 651-662. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:4(651)
- Wang, X., Gan, L., Zhang, Y.(2008), "Differential quadrature analysis of the buckling of thin rectangular plates with cosine-distributed compressive loads on two opposite sides", Adv. Eng. Softw., 39(6), 497-504. https://doi.org/10.1016/j.advengsoft.2007.03.011
- Wang, X.W., Wang, X.F. and Shi, X.D., (2007), "Accurate buckling loads of thin rectangular plates under parabolic edge compressions by the differential quadrature method", Int. J. Mech. Sci. 49(4), 447-453 https://doi.org/10.1016/j.ijmecsci.2006.09.004
- Yunus S. M., Saigal S., Cook R. D., (1989), "On improved hybrid finite elements with rotational degrees of freedom", Int. J. Numer. Meth. Eng., 28(4), 785-800. https://doi.org/10.1002/nme.1620280405
- Zhong H., Gu, C., (2006), "Buckling of Simply Supported Rectangular Reissner-Mindlin Plates Subjected to Linearly Varying In-Plane Loading", J. Engrg. Mech., 132(5), 578-581. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:5(578)
Cited by
- Vibration and buckling analyses of laminated panels with and without cutouts under compressive and tensile edge loads vol.21, pp.1, 2016, https://doi.org/10.12989/scs.2016.21.1.037
- Buckling analysis of functionally graded material grid systems vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.877
- Vibration analysis of functionally graded material (FGM) grid systems vol.18, pp.2, 2015, https://doi.org/10.12989/scs.2015.18.2.395