DOI QR코드

DOI QR Code

Fire performance of concrete-filled steel tubular columns strengthened by CFRP

  • Tao, Zhong (Civionics Research Centre, University of Western Sydney) ;
  • Wang, Zhi-Bin (College of Civil Engineering, Fuzhou University) ;
  • Han, Lin-Hai (Department of Civil Engineering, Tsinghua University) ;
  • Uy, Brian (Civionics Research Centre, University of Western Sydney)
  • Received : 2010.02.05
  • Accepted : 2011.06.22
  • Published : 2011.07.25

Abstract

With the increasing use of concrete-filled steel tubes (CFST) as structural members, there is a growing need to provide suitable measures for possible strengthening or repair of these kinds of structural elements. Fibre reinforced polymer (FRP) jacketing is a recent method and is particularly attractive in which it does not significantly increase the section size, and is relatively easy to install. Thus, it can be used to enhance strength and/or ductility of CFST members. Very little information is available on the performance of FRP-strengthened CFST members under fire conditions. This paper is an attempt to study the fire performance of CFST columns strengthened by FRP. The results of fire endurance tests on FRP-strengthened circular CFST columns are presented. Failure modes of the specimens after exposure to fire, temperatures in the cross section, axial deformation and fire resistance of the composite columns are analysed. It is demonstrated that the required fire endurance can be achieved if the strengthened composite columns are appropriately designed.

Keywords

References

  1. ABAQUS. (2007), ABAQUS Standard User's Manual, Version 6.7.2, Dassault Systemes Corp., Providence, RI, USA.
  2. ACI 440.2R-08. (2008), Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, American Concrete Institute, Farmington Hills, MI, USA.
  3. ASTM D3039/D3039M. (2006), Standard Test Method for Tensile Properties of Polymer Matrix Composite Material, American Society for Testing and Materials, West Conshohocken, PA., USA.
  4. Bisby, L. A., Green, M. F. and Kodur, V. K. R. (2005a), "Modeling the behavior of fiber reinforced polymer-confined concrete columns exposed to fire", ASCE J. Comp. Const., 9(1), 15-24. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(15)
  5. Bisby, L. A., Kodur, V. K. R. and Green, M. F. (2005b), "Fire endurance of fiber-reinforced polymer-confined concrete columns", ACI Struct. J., 102(6), 883-891.
  6. CECS24:90. (1990). Regulation of Application Technology of Fire Resistive Coating for Steel Structure. China Association for Engineering Construction Standardization, Beijing, China (in Chinese).
  7. Chowdhury, E. U., Bisby, L. A., Green, M. F. and Kodur, V. K. R. (2007), "Investigation of insulated FRP-wrapped reinforced concrete columns in fire", Fire. Safety. J., 42(6-7), 452-460. https://doi.org/10.1016/j.firesaf.2006.10.007
  8. Chowdhury, E. U., Bisby, L. A., Green, M. F. and Kodur, V. K. R. (2008), "Residual behavior of fire-exposed reinforced concrete beams prestrengthed in flexure with fibre-reinforced polymer sheets", J. Comp. Const., ASCE, 12(1), 61-58. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:1(61)
  9. GB 50016-2006. (2006), Code of Design on Building Fire Protection and Prevention, Chinese standard, Beijing, China (in Chinese).
  10. Griffis, C. A., Masumura, R. A. and Chang, C. I. (1981), "Thermal response of graphite epoxy composite subjected to rapid heating", J. Comp. Mater., 15(5), 427-442. https://doi.org/10.1177/002199838101500503
  11. Han, L. H. (2007), Concrete Filled Steel Tubular Structures Theory and Practice, China Science Press, Beijing, China (in Chinese).
  12. Han, L. H., Yang, Y. F. and Xu, L. (2003), "An experimental study and calculation on the fire resistance of concrete-filled SHS and RHS columns", J. Const. Steel. Res., 59(4), 427-452. https://doi.org/10.1016/S0143-974X(02)00041-X
  13. Han, L. H. and Yao, G. H. (2004), "Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC)", Thin.Walled. Struct., 42(9),1357-1377. https://doi.org/10.1016/j.tws.2004.03.016
  14. Han, L. H., Zheng, Y. Q. and Teng, J. G. (2006), "Fire resistance of RC and FRP-confined RC columns", Magazine.Concr. Res., 58(8), 533-546. https://doi.org/10.1680/macr.2006.58.8.533
  15. Hao, J. Y., Hu, A. J., Gao, S. Q., Wang, X. C. and Yang, S. Y. (2001), "Processable polyimides with high glass transition temperature and high storage modulus retention at $400^{\circ}C$", High Performance Polymers, 13(3), 211-224. https://doi.org/10.1088/0954-0083/13/3/312
  16. Hawileh, R. A., Naser, M., Zaidan, W. and Rasheedb, H. A. (2009), "Modeling of insulated CFRP-strengthened reinforced concrete T-beam exposed to fire", Eng. Struct., 31(12), 3072-3079. https://doi.org/10.1016/j.engstruct.2009.08.008
  17. Hong, S. and Varma, A. H. (2009), "Analytical modeling of the standard fire behavior of loaded CFT columns", J. Const. Steel. Res., 65(1), 54-69. https://doi.org/10.1016/j.jcsr.2008.04.008
  18. Hu, K. X., He, G. S. and Lu, F. (2007), "Experimental study on fire protection methods of reinforced concrete beams strengthened with carbon fiber reinforced polymer", Frontiers of Architecture and Civil Engineering in China, 1(4), 399-404. https://doi.org/10.1007/s11709-007-0054-7
  19. ISO 834. 1999. Fire-resistance tests Elements of building construction-Part 1: General requirements, ISO 834-1, International Organization for Standardization, Geneva, Switzerland.
  20. Ji, G., Li, G., Li, X., Pang, S. S. and Jones, R. (2008), "Experimental study of FRP tube encased concrete cylindersexposed to fire", Com. Struct., 85(2), 149-154. https://doi.org/10.1016/j.compstruct.2007.10.013
  21. Kodur, V. K. R., Bisby, L. A. and Green, M. F. (2006), "Experimental evaluation of the fire behaviour of insulatedfibre-reinforced-polymer-strengthened reinforced concrete columns", Fire Safety Journal, 41(7), 547-557. https://doi.org/10.1016/j.firesaf.2006.05.004
  22. Kodur, V. K. R., Bisby, L. A. and Green, M. F. (2007), "Preliminary guidance for the design of FRP-strengthened concrete members exposed to fire", J. Fire. Protec. Eng., 17(1), 5-26. https://doi.org/10.1177/1042391507061956
  23. Lam, D. and Gardner, L. (2008), "Structural design of stainless steel concrete filled columns", J. Const. Steel. Res., 64(11), 1275-1282. https://doi.org/10.1016/j.jcsr.2008.04.012
  24. Lie, T. T. (1994). "Fire resistance of circular steel columns filled with bar-reinforced concrete", J. Struct. Eng., ASCE, 120(5), 1489-1509. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:5(1489)
  25. Lin, P. Z., Zhu, Z. C. and Li, Z. J. (1997), "Fire resistance structure: The concrete filled steel tubular column", Conference Report of International Conference on Composite Construction Conventional and Innovative, Innsbruck, Austria. p. 397-401.
  26. Liu, F., Wu, B. and Wei, D. (2009), "Failure modes of reinforced concrete beams strengthened with carbon fiber sheet in fire", Fire Safety Journal, 44(7), 941-950. https://doi.org/10.1016/j.firesaf.2009.05.006
  27. Lu, H., Zhao, X. L. and Han, L. H. (2009), "Fire behaviour of high strength self-consolidating concrete filled steel tubular stub columns", J. Const. Steel. Res., 65(10-11), 1995-2010. https://doi.org/10.1016/j.jcsr.2009.06.013
  28. Park, S. H., Choi, S. M. and Chung, K. S. (2008), "A Study on the fire-resistance of concrete-filled steel square tube columns without fire protection under constant central axial loads", Steel. Comp. Struct., 8(6), 491-510. https://doi.org/10.12989/scs.2008.8.6.491
  29. Tao, Z. and Han, L. H. (2007), "Behaviour of fire-exposed concrete-filled steel tubular beam-columns repaired with CFRP wraps", Thin. Walled. Struct., 45(1), 63-76. https://doi.org/10.1016/j.tws.2006.11.004
  30. Tao, Z., Han, L. H. and Wang, L. L. (2007a), "Compressive and flexural behaviour of CFRP repaired concrete-filled steel tubes after exposure to fire", J. Constr. Steel. Res., 63(8), 1116-1126. https://doi.org/10.1016/j.jcsr.2006.09.007
  31. Tao, Z., Han, L. H. and Zhuang, J. P. (2007b), "Axial loading behavior of CFRP strengthened concrete-filled steel tubular stub columns", Advan. Struct. Eng., 10(1), 37-46. https://doi.org/10.1260/136943307780150814
  32. Tao, Z., Han, L. H. and Zhuang, J. P. (2008), "Cyclic performance of fire-damaged concrete-filled steel tubular beam-columns repaired with CFRP wraps", J. Const. Steel. Res., 64(1), 37-50. https://doi.org/10.1016/j.jcsr.2007.02.004
  33. Tao, Z. and Yu, Q. (2006), New Types of Composite Columns Experiments, Theory and Methodology, China Science Press, Beijing (in Chinese).
  34. Teng, J. G. (2006), "Structural applications of FRP composites in construction", In: Proceedings of the First International Forum on Advances in Structural Engineering, Beijing, China. p. 354-392.
  35. Teng, J. G., Chen, J. F., Smith, S. T. and Lam, L. (2002), FRP-Strengthened RC Structures, John Wiley & Sons, Ltd.
  36. Uy, B. and Patil, S. B. (2006), "Concrete filled high strength steel box columns for tall buildings: Behaviour and design", The Structural Design of Tall Buildings, 5(2), 75-94.
  37. Wang, Q. L., Guan, C. W. and Zhao, Y. H. (2004), "Theoretical analysis about concentrically compressed concrete filled hollow CFRP-steel stub columns with circular cross-section", In: Proceedings of the Second International Conference on the Steel & Composite Structures, Seoul, Korea. p. 684 (full paper on CD-ROM).
  38. Wang, T. and Xu, Z. (1997), "The mechanism of epoxy modification of cement mortar", J. Nanjing. Univ. Chemical. Techno., 19(2), 26-32 (in Chinese).
  39. Wang, Z. B., Tao, Z., Uy, B. and Han, L. H. (2009), "Analysis of FRP-strengthened concrete-filled steel tubular columns under axial compression", In: Proceedings of the First International Postgraduate Conference on Infrastructure and Environment, Hong Kong, China. p. 485-492.
  40. Williams, B., Kodur, V., Green, M. F. and Bisby, L. (2008), "Fire endurance of fiber-reinforced polymer strengthened concrete T-beams", ACI. Struct. J., 105(1), 60-67.
  41. Xiao, Y., He, W. H. and Choi, K. K. (2005), "Confined concrete-filled tubular columns", J. Struct. Eng., ASCE, 131(3), 488-497. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(488)
  42. Zhao, X. L. and Han, L. H. (2006), "Double skin composite construction", Prog. Struct. Eng. Mater., 8(3), 93-102. https://doi.org/10.1002/pse.216
  43. Zhao, X. L. and Zhang, L. (2007), "State-of-the-art review on FRP strengthened steel structures", Eng. Struct., 29(8), 1808-1823. https://doi.org/10.1016/j.engstruct.2006.10.006
  44. Zhuang, J. P. (2006), Research on Cyclic Behavior of FRP-Strengthened Concrete-Filled Steel Tubular Columns after Fire, Master's thesis, College of Civil Engineering, Fuzhou University (in Chinese).

Cited by

  1. Repair of Fire-Exposed Preloaded Rectangular Concrete Columns by Postcompressed Steel Plates vol.140, pp.3, 2014, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000884
  2. Flexural Performances of Square Concrete Filled CFRP-Steel Tubes (S-CF-CFRP-ST) vol.18, pp.8, 2015, https://doi.org/10.1260/1369-4332.18.8.1319
  3. Behaviour of CFRP externally-reinforced circular CFST members under combined tension and bending vol.106, 2015, https://doi.org/10.1016/j.jcsr.2014.12.007
  4. Static behavior of axially compressed square concrete filled CFRP-steel tubular (S-CF-CFRP-ST) columns with moderate slenderness vol.110, 2017, https://doi.org/10.1016/j.tws.2016.10.019
  5. Fire performance curves for unprotected HSS steel columns vol.15, pp.6, 2013, https://doi.org/10.12989/scs.2013.15.6.705
  6. Strengthening of steel structures with fiber-reinforced polymer composites vol.78, 2012, https://doi.org/10.1016/j.jcsr.2012.06.011
  7. Seismic performance of FRP-reinforced concrete-filled thin-walled steel tube considering local buckling vol.37, pp.9, 2018, https://doi.org/10.1177/0731684418756514
  8. Residual strength capacity of fire-exposed circular concrete-filled steel tube stub columns vol.6, pp.5, 2011, https://doi.org/10.12989/acc.2018.6.5.485
  9. Repair of Fire-Damaged Reinforced Concrete Members with Axial Load: A Review vol.11, pp.4, 2019, https://doi.org/10.3390/su11040963
  10. Behavior of Circular Fiber-Reinforced Polymer-Steel-Confined Concrete Columns Subjected to Reversed Cyclic Loads: Experimental Studies and Finite-Element Analysis vol.145, pp.9, 2019, https://doi.org/10.1061/(asce)st.1943-541x.0002373
  11. Monotonic axial compressive behaviour and confinement mechanism of square CFRP-steel tube confined concrete vol.217, pp.None, 2011, https://doi.org/10.1016/j.engstruct.2020.110802
  12. Hysteretic Behavior of Specimens of Circular Concrete-Filled CFRP-Steel Tubular Beam-Column vol.2021, pp.None, 2011, https://doi.org/10.1155/2021/9933884
  13. Study on load distribution ratio of composite pre-tightened tooth joint by shear nonlinearity vol.40, pp.5, 2021, https://doi.org/10.12989/scs.2021.40.5.747
  14. Analysis of Bearing Capacity of Circular Concrete Filled CFRP-Steel Tubular Beam-Column vol.26, pp.1, 2022, https://doi.org/10.1007/s12205-021-2103-5