과제정보
연구 과제 주관 기관 : National Center for Research on Earthquake Engineering (NCREE)
참고문헌
- ABAQUS (2006), "ABAQUS analysis user's manual", ABAQUS Inc.
- Abdalla, K. M., Abu-Farsakh, G. A. R. and Barakat, S. A. (2007), "Experimental investigation of force-distribution in high-strength bolts in extended end-plate connections", Steel. Compos. Struct., 7(2), 87-103. https://doi.org/10.12989/scs.2007.7.2.087
- AISC (2005), "Seismic provisions for steel buildings", AISC/ANSI Standard 341-05, American Institute of Steel Construction, Chicago, IL.
- Cavdar, O., Bayraktar, A., Cavdar, A. and Kartal, M. E. (2009), "Stochastic finite element analysis of structural systems with partially restrained connections subjected to seismic loads", Steel. Compos. Struct., 9(6), 499-518. https://doi.org/10.12989/scs.2009.9.6.499
- Ciutina, A. L. and Dubina, D. (2006), "Seismic behaviour of steel beam-to-column joints with column web stiffening", Steel. Compos. Struct., 6(6), 493-512. https://doi.org/10.12989/scs.2006.6.6.493
- Kim, T., Whittaker, A. S., Gilani, A. S. J., Bertero, V. V. and Takhirov, S. M. (2002), "Cover-plate and flangeplate steel moment-resisting connections", J. Struct. Eng.-ASCE, 128(4), 484-482.
- Kim, J. and Park, J. (2008), "Design of steel moment frames considering progressive collapse", Steel. Compos. Struct., 8(1), 85-98. https://doi.org/10.12989/scs.2008.8.1.085
- Lee, K. and Bruneau, M. (2005), "Energy dissipation demand of compression members in concentrically braced frames", Steel. Compos. Struct., 5(5), 345-358. https://doi.org/10.12989/scs.2005.5.5.345
- Lee, C. H., Jeon, S. W., Kim, J. H. and Uang, C. M. (2005), "Effects of panel zone strength and beam web connection method on seismic performance of reduced beam section steel moment connections", J. Struct. Eng.-ASCE, 131(12), 1854-1865. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1854)
- Lehman, D. E., Roeder, C. W., Herman, D., Johnson, S. and Kotulka, B. (2008), "Improved seismic performance of gusset plate connections", J. Struct. Eng.-ASCE, 134(6), 890-901. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:6(890)
- Longo, A., Montuori, R. and Piluso, V. (2008), "Plastic design of seismic resistant V-braced frames," J. Earthq. Engng., 12(8), 1246-1266. https://doi.org/10.1080/13632460802211867
- Martinelli L., Mulas M.G., and Perotti F. (1996), "The seismic response of concentrically braced moment resisting steel frames," Earthq. Engng. Struct. Dyn., 25(11), 1275-1299. https://doi.org/10.1002/(SICI)1096-9845(199611)25:11<1275::AID-EQE616>3.0.CO;2-U
- Pucinotti, R. (2006), "Cyclic mechanical model of semirigid top and seat and double web angle connections", Steel. Compos. Struct., 6(2), 139-157. https://doi.org/10.12989/scs.2006.6.2.139
- Remennikov, A. M. and Walpole, W. R. (1997), "Analytical prediction of seismic behavior for concentricallybraced steel systems", Earthq. Engng. Struct. Dyn., 26(8), 859-874. https://doi.org/10.1002/(SICI)1096-9845(199708)26:8<859::AID-EQE684>3.0.CO;2-9
- Saravanan, M., Arul Jayachandran, S., Marimuthu, V. and Prabha, P. (2009), "Advanced analysis of cyclic behaviour of plane steel frames with semi-rigid connections", Steel. Compos. Struct., 9(4), 381-395. https://doi.org/10.12989/scs.2009.9.4.381
- Tremblay, R., Archambault, M. H. and Filiatrault, A. (2003), "Seismic response of concentrically braced steel frames made with rectangular hollow bracing members", J. Struct. Eng.-ASCE, 129(12), 1626-1636. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:12(1626)
- Tsai, K.C. and Popov, E.P. (1990), "Seismic panel zone on elastic story drift in steel moment resistance frames," J. Struct. Eng.-ASCE, 116(12), 3285-3301. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:12(3285)
- Uriz, P., Filippou, F. C. and Mahin, S. A. (2008), "Model for cyclic inelastic buckling of steel braces", J. Struct. Eng.-ASCE, 134(4), 619-628. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:4(619)
- Vu, A. Q. and Leon, R. T. (2008), "Vibration analysis of steel frames with semi-rigid connections on an elastic foundation", Steel. Compos. Struct., 8(4), 265-280. https://doi.org/10.12989/scs.2008.8.4.265
- Yoo, J. H., Lehman, D. E. and Roeder, C. W. (2008), "Influence of connection design parameters on the seismic performance of braced frames", J. Constr. Steel Res., 64(6), 607-623. https://doi.org/10.1016/j.jcsr.2007.11.005
- Yoo, J. H., Roeder, C. W. and Lehman, D. E. (2009), "Simulated behavior of multi-story X-braced frames", Engng. Struct., 31(1), 182-197. https://doi.org/10.1016/j.engstruct.2008.07.019
피인용 문헌
- Evaluation of the seismic performance of off-centre bracing system with ductile element in steel frames vol.12, pp.5, 2012, https://doi.org/10.12989/scs.2012.12.5.445
- Seismic performance of steel frames with controlled buckling mechanisms in knee braces vol.107, 2015, https://doi.org/10.1016/j.jcsr.2015.01.010
- Hysteretic behaviour of dissipative bolted fuses for earthquake resistant steel frames vol.85, 2013, https://doi.org/10.1016/j.jcsr.2013.02.016
- Comparison of nonlinear behavior of steel moment frames accompanied with RC shear walls or steel bracings vol.22, pp.14, 2013, https://doi.org/10.1002/tal.751
- Numerical comparison of the seismic performance of steel rings in off-centre bracing system and diagonal bracing system vol.19, pp.4, 2015, https://doi.org/10.12989/scs.2015.19.4.917
- Evaluating the performance of OBS-C-O in steel frames under monotonic load vol.8, pp.3, 2015, https://doi.org/10.12989/eas.2015.8.3.699
- Study of the seismic performance of steel frames in the elliptic bracing vol.18, pp.5, 2016, https://doi.org/10.21595/jve.2016.16858
- Energy dissipation system for earthquake protection of cable-stayed bridge towers vol.5, pp.6, 2013, https://doi.org/10.12989/eas.2013.5.6.657
- Experimental study on seismic performance of partial penetration welded steel beam-column connections with different fillet radii vol.17, pp.6, 2014, https://doi.org/10.12989/scs.2014.17.6.851
- A fuzzy system for evaluation of deteriorated marine steel structures vol.32, pp.3, 2017, https://doi.org/10.3233/JIFS-161411
- Experimental and analytical investigations on seismic behavior of ductile steel knee braced frames vol.16, pp.1, 2014, https://doi.org/10.12989/scs.2014.16.1.001
- Hysteretic behavior of dissipative welded fuses for earthquake resistant composite steel and concrete frames vol.14, pp.6, 2013, https://doi.org/10.12989/scs.2013.14.6.547
- Evaluating the seismic performance of off-centre bracing system with circular element in optimum place vol.14, pp.2, 2014, https://doi.org/10.1007/s13296-014-2009-x
- On the Evaluation of the Use of EKBs to Improve Seismic Performance of Steel Frames vol.18, pp.1, 2018, https://doi.org/10.1007/s13296-018-0303-8
- Seismic design of steel frames using multi-objective optimization vol.45, pp.2, 2013, https://doi.org/10.12989/sem.2013.45.2.211
- Cyclic testing of innovative two-level control system: Knee brace & vertical link in series in chevron braced steel frames vol.64, pp.3, 2017, https://doi.org/10.12989/sem.2017.64.3.301
- Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA) vol.13, pp.6, 2011, https://doi.org/10.12989/eas.2017.13.6.531
- Evaluation of seismic criteria of built-up special concentrically braced frames vol.29, pp.1, 2011, https://doi.org/10.12989/scs.2018.29.1.023
- Experimental and numerical evaluation of innovated T-resisting frames with haunched horizontal plate girders vol.23, pp.8, 2020, https://doi.org/10.1177/1369433219898082
- Experimental and numerical evaluation of an innovative diamond-scheme bracing system equipped with a yielding damper vol.36, pp.2, 2011, https://doi.org/10.12989/scs.2020.36.2.197
- Evaluation of cyclic performance of a novel bracing system equipped with a circular energy dissipater vol.28, pp.None, 2011, https://doi.org/10.1016/j.istruc.2020.09.007
- Seismic analysis of high-rise steel frame building considering irregularities in plan and elevation vol.39, pp.1, 2011, https://doi.org/10.12989/scs.2021.39.1.065
- Experimental investigation of a new lateral bracing system called OGrid under cyclic loading vol.35, pp.None, 2022, https://doi.org/10.1016/j.istruc.2021.11.015