참고문헌
- Abu-Hilal, M. and Mohsen, M. (2000), "Vibration of beams with general boundary conditions due to moving harmonic load", J. Sound Vib., 232(4), 703-717. https://doi.org/10.1006/jsvi.1999.2771
- Adali, S. (2008), "Variational principles for multi-walled carbon nanotubes undergoing buckling based on nonlocal elasticity theory", Phys. Lett. A, 372(35), 5701-5705. https://doi.org/10.1016/j.physleta.2008.07.003
- Aydogdu, M. and Ece, M.C. (2007), "Vibration and buckling of in-plane loaded double-walled carbon nanotubes", Turkish J. Eng. Env. Sci., 31, 305-310.
- Aydogdu, M. (2008), "Vibration of multi-walled carbon nanotubes by generalized shear deformation theory", Int. J. Mech. Sci., 50(4), 837-844. https://doi.org/10.1016/j.ijmecsci.2007.10.003
- Aydogdu, M. (2009), "Axial vibration of the nanorods with the nonlocal continuum rod model", Physica E, 41(5), 861-864. https://doi.org/10.1016/j.physe.2009.01.007
- Aydogdu, M. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E, 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
- Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008
- Chopra, A.K. (2001), Dynamics of structures, Prentice Hall, Inc, New Jersey.
- Civalek, O., and Akgoz, B. (2009), "Static analysis of single walled carbon nanotubes (SWCNT) based on Eringen's elasticity theory", Int. J. Eng. Appl. Sci., 2, 47-56.
- Civalek, O., Demir, C. and Akgoz, B. (2010), "Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model", Math. Comput. Appl., 15, 289-298.
- Civalek, O., Akgoz, B. (2010), "Free vibration analysis of microtubules as cytoskeleton components: Nonlocal Euler-Bernoulli beam modeling", Scientica Iranica, Transaction B- Mech. Eng., 17, 367-375.
- Cowper, G.R. (1966), "The shear coefficient in Timoshenko's beam theory", ASME J. Appl. Mech., 33, 335-340. https://doi.org/10.1115/1.3625046
- Dedkov, G.V. and Kyasov, A.A. (2007), "Fluctuational-electromagnetic interaction of a moving nanoparticle with walls of a flat dielectric gap", Tech. Phys. Lett., 33(1), 51-53. https://doi.org/10.1134/S1063785007010142
- Demir, C., Civalek, O. and Akgoz, B. (2010), "Free vibration analysis of carbon nanotubes Based on shear deformable beam theory by discrete singular convolution technique", Math. Comput. Appl., 15, 57-65.
- Ece, M.C. and Aydogdu, M. (2007), "Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes", Acta. Mech., 190(1-4), 185-195. https://doi.org/10.1007/s00707-006-0417-5
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Fryba, L. (1972), Vibration of solids and structures under moving loads, the netherlands: Noordhoff International, Groningen.
- Garinei, A. (2006), "Vibrations of simple beam-like modeled bridge under harmonic moving loads", Int. J. Eng. Sci., 44(11-12), 778-787. https://doi.org/10.1016/j.ijengsci.2006.04.013
- Hu, Y.G., Liew, K.M. and Wang, Q. (2009), "Nonlocal elastic beam models for flexural wave propagation in double-walled carbon nanotubes", J. Appl. Phys., 106(4), 044301. https://doi.org/10.1063/1.3197857
- Heireche, H., Tounsi, A., Benzair, A., Maachou, M. and Adda, B.E.A. (2008), "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Physica E, 40(8), 2791-2799. https://doi.org/10.1016/j.physe.2007.12.021
- Hummer, G., Rasaiah. J.C. and Noworyta, J.P. (2001), "Water conduction through the hydrophobic channel of a carbon nanotube", Nature, 414, 188-190. https://doi.org/10.1038/35102535
- Iijima, S. (1991), "Helical microtubes of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0
- Ke, L.L., Xiang, Y., Yang, J. and Kitipornchai, S. (2009), "Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory", Comput. Mater. Sci., 47(2), 409-417. https://doi.org/10.1016/j.commatsci.2009.09.002
- Kiani K. and Mehri, B., (2010), "Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories", J. Sound Vib. 329(11), 2241-2264. https://doi.org/10.1016/j.jsv.2009.12.017
- Klasztorny, M. (2001), "Vertical vibrations of a multi-span beam steel bridge induced by a superfast passenger train" Struct. Eng. Mech., 12(3), 267-281. https://doi.org/10.12989/sem.2001.12.3.267
- Kocaturk, T. and im ek, M. (2006a), "Vibration of viscoelastic beams subjected to an eccentric compressive force and a concentrated moving harmonic force", J. Sound Vib., 291(1-2), 302-322. https://doi.org/10.1016/j.jsv.2005.06.024
- Kocaturk, T. and Simsek, M. (2006b), "Dynamic analysis of eccentrically prestressed viscoelastic Timoshenko beams under a moving harmonic load", Comput. Struct., 84(31-32), 2113-2127. https://doi.org/10.1016/j.compstruc.2006.08.062
- Kumar, D., Heinrich, C. and Waas, A.M. (2008), "Buckling analysis of carbon nanotubes modeled using nonlocal continuum theories", J. Appl. Phys., 103(7), 073521. https://doi.org/10.1063/1.2901201
- Lee, H.P. (1994), "Dynamic response of a beam with intermediate point constraints subject to a moving load", J. Sound Vib., 171(3), 361-368. https://doi.org/10.1006/jsvi.1994.1126
- Lee, H.W. and Chang, W.J. (2009), "Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium", Physica E, 41(4), 529-532. https://doi.org/10.1016/j.physe.2008.10.002
- Li, X.F. and Wang, B.L. (2009), "Vibrational modes of Timoshenko beams at small scales", Appl. Phys. Lett., 94(10), 101903. https://doi.org/10.1063/1.3094130
- Lim, C.W. and Wang, C.M. (2007), "Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams", J. Appl. Phys., 101(5), 054312. https://doi.org/10.1063/1.2435878
- Lim, C.W., Li, C. and Yu, J.L. (2009), "The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams", Interaction and Multiscale Mechanics, 2, 223-233. https://doi.org/10.12989/imm.2009.2.3.223
- Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2006), "Dynamics properties of flexural beams using a nonlocal elasticity model", J. Appl. Phys., 99(7), 073510. https://doi.org/10.1063/1.2189213
- Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2007), "Application of nonlocal beam models for carbon nanotubes", Int. J. Solids. Struct., 44(16), 5289-5300. https://doi.org/10.1016/j.ijsolstr.2006.12.034
- Lu, P. (2007), "Dynamic analysis of axially prestressed micro/nanobeam structures based on nonlocal beam theory", J. Appl. Phys., 101(7), 073504. https://doi.org/10.1063/1.2717140
- Mir, M., Hosseini, A., Majzoobi, G.H. (2008), "A numerical study of vibrational properties of single-walled carbon nanotubes", Comput. Mater. Sci., 43(3), 540-548. https://doi.org/10.1016/j.commatsci.2007.12.024
- Murmu, T. and Pradhan, S.C. (2009), "Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM", Physica E, 41(7), 1232-1239. https://doi.org/10.1016/j.physe.2009.02.004
- Murmu, T. and Pradhan, S.C. (2009), "Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory", Physica E, 41(8), 1451-1456. https://doi.org/10.1016/j.physe.2009.04.015
- Murmu, T. and Pradhan, S.C. (2009), "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Comput. Mater. Sci., 46(4), 854-859. https://doi.org/10.1016/j.commatsci.2009.04.019
- Murmu, T. and Pradhan, S.C. (2010), "Thermal effects on the stability of embedded carbon nanotubes", Comput. Mater. Sci., 47(3), 721-726. https://doi.org/10.1016/j.commatsci.2009.10.015
- Narendar, S. and Gopalakrishnan, S. (2009), "Nonlocal scale effects on wave propagation in multi-walled carbon nanotubes", Comput. Mater. Sci., 47(2), 526-538. https://doi.org/10.1016/j.commatsci.2009.09.021
- Newmark, N.M. (1959), "A method of computation for structural dynamics", ASCE Eng. Mech. Div., 85, 67-94.
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
- Pradhan, S.C., Sarkar, A. (2009), "Analyses of tapered fgm beams with nonlocal theory", Struct. Eng. Mech., 32(6), 811-833. https://doi.org/10.12989/sem.2009.32.6.811
- Pradhan, S.C. and Phadikar, J.K. (2009), "Bending, buckling and vibration analyses of nonhomogeneous nanotubes using GDQ and nonlocal elasticity theory", Struct. Eng. Mech., 33, 193-213. https://doi.org/10.12989/sem.2009.33.2.193
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431
- Sato, M. and Shima, H. (2009), "Buckling characteristics of multiwalled carbon nanotubes under external pressure", Interaction and Multiscale Mechanics, 2, 209-222. https://doi.org/10.12989/imm.2009.2.2.209
- Sears, A. and Batra, R.C. (2004), "Macroscopic properties of carbon nanotubes from molecular-mechanics simulations", Phys. Rev. B, 69(23), 235406. https://doi.org/10.1103/PhysRevB.69.235406
- Sniady, P. (2008), "Dynamic response of a Timoshenko beam to a moving force", ASME J. Appl. Mech., 75(2), 0245031-0245034
- Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94(11), 7281. https://doi.org/10.1063/1.1625437
- Simsek, M. and Kocaturk, T. (2007), "Dynamic analysis of an eccentrically prestressed damped beam under a moving harmonic force using higher order shear deformation theory", ASCE J. Struct. Eng., 133(12), 1733- 1741. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:12(1733)
- Simsek, M. and Kocaturk, T. (2009a), "Nonlinear dynamic analysis of an eccentrically prestressed damped beam under a concentrated moving harmonic load", J. Sound Vib., 320(1-2), 235-253. https://doi.org/10.1016/j.jsv.2008.07.012
- Simsek, M. and Kocaturk, T. (2009b), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90(4), 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024
- Simsek. (2010), "Vibration analysis of a functionally graded beam under a moving mass by using different beam theories", Compos. Struct., 92(4), 904-917. https://doi.org/10.1016/j.compstruct.2009.09.030
- Simsek, M. (2010), "Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load", Compos. Struct., 92(10), 2532-2546. https://doi.org/10.1016/j.compstruct.2010.02.008
- Simsek, M. (2010), "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory", Physica E, 43(1), 182-191. https://doi.org/10.1016/j.physe.2010.07.003
- Timoshenko, S. and Young, D.H. (1955), Vibration Problems in Engineering, Van Nostrand Company, New York.
- Tounsi, A., Heireche, H., Berrabah, H.M., Benzair, A. and Boumia, L. (2008), "Effect of small size on wave propagation in double-walled carbon nanotubes under temperature field", J. Appl. Phys., 104(10), 104301. https://doi.org/10.1063/1.3018330
- Wang, R.T. (1997), "Vibration of multi-span Timoshenko beams to a moving force", J. Sound Vib., 207(5), 731-742. https://doi.org/10.1006/jsvi.1997.1188
- Wang, R.T. and Lin, J.S. (1998), "Vibration of T-type Timoshenko frames subjected to moving loads", Struct. Eng. Mech., 6, 229-243. https://doi.org/10.12989/sem.1998.6.2.229
- Wang, R.T. and Sang, Y.L. (1999), "Out-of-plane vibration of multi-span curved beam due to moving loads", Struct. Eng. Mech., 7(4), 361-375. https://doi.org/10.12989/sem.1999.7.4.361
- Wang, C.M., Tan, V.B.C. and Zhang, Y.Y. (2006), "Timoshenko beam model for vibration analysis of multiwalled carbon nanotubes", J. Sound. Vib., 294(4-5), 1060-1072. https://doi.org/10.1016/j.jsv.2006.01.005
- Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301. https://doi.org/10.1063/1.2141648
- Wang, L. and Hu, H. (2005), "Flexural wave propagation in single-walled carbon nanotubes", Phys. Rev. B, 71(19), 195412. https://doi.org/10.1103/PhysRevB.71.195412
- Wang, Q., Varadan, V.K. and Quek, S.T. (2006), "Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models", Phys. Lett. A, 357(2), 130-135. https://doi.org/10.1016/j.physleta.2006.04.026
- Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures", Phys. Lett. A, 363(3), 236-242. https://doi.org/10.1016/j.physleta.2006.10.093
- Wang, L. (2009), "Vibration and instability analysis of tubular nano- and micro-beams conveying fluid using nonlocal elastic theory", Physica E, 41(10), 1835-1840. https://doi.org/10.1016/j.physe.2009.07.011
- Wang, L. (2009), "Dynamical behaviors of double-walled carbon nanotubes conveying fluid accounting for the role of small length scale", Comput. Mater. Sci., 45(2), 584-588. https://doi.org/10.1016/j.commatsci.2008.12.006
- XiaoDong, Y. and Lim, C.W. (2009), "Nonlinear vibrations of nano-beams accounting for nonlocal effect using a multiple scale method", Science in China Series E: Technological Sciences, 52(3), 617-621. https://doi.org/10.1007/s11431-009-0046-z
- Yoon, J., Ru, C.Q. and Mioduchowski, A. (2003), "Vibration of an embedded multiwall carbon nanotube", Compos. Sci. Techn., 63(11), 1533-1542. https://doi.org/10.1016/S0266-3538(03)00058-7
- Yoon, J., Ru, C.Q. and Mioduchowski, A. (2004), "Timoshenko-beam effects on transverse wave propagation in carbon nanotubes", Compos. Part B: Eng., 35(2), 87-93. https://doi.org/10.1016/j.compositesb.2003.09.002
- Yu, L., Chan, T.H.T. and Zhu, J.H. (2008), "A MOM-based algorithm for moving force identification: Part II. Experiment and comparative studies", Struct. Eng. Mech., 29(2), 155-169. https://doi.org/10.12989/sem.2008.29.2.155
- Zhang, Y., Liu, G. and Han, X. (2005), "Transverse vibrations of double-walled carbon nanotubes under compressive axial load", Phys. Lett. A, 340(1-4), 258-266. https://doi.org/10.1016/j.physleta.2005.03.064
- Zhang, Y.Q., Liu, G.R and Wang, J.S. (2004), "Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression", Phys. Rev. B, 70(20), 205430. https://doi.org/10.1103/PhysRevB.70.205430
- Zhang, Y.Q., Liu, G.R. and Han, X. (2006), "Effect of small length scale on elastic buckling of multi-walled carbon nanotubes under radial pressure", Phys. Lett. A, 349(5), 370-376. https://doi.org/10.1016/j.physleta.2005.09.036
- Zhang, Y.Q., Liu, G.R. and Xie, X.Y. (2005), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Phys. Rev. B, 71(19), 195404. https://doi.org/10.1103/PhysRevB.71.195404
- Zheng, D.Y., Cheung, Y.K., Au, F.T.K. and Cheng, Y.S. (1998), "Vibration of multi-span non-uniform beams under moving loads by using modified beam vibration functions" J. Sound Vib., 212(3), 455-467. https://doi.org/10.1006/jsvi.1997.1435
- Zhu, X.Q. and Law, S.S. (1999), "Moving force identification on multi-span continuous bridge", J. Sound Vib., 228(2), 377-396. https://doi.org/10.1006/jsvi.1999.2416
피인용 문헌
- Nonlinear vibration of embedded single-walled carbon nanotube with geometrical imperfection under harmonic load based on nonlocal Timoshenko beam theory vol.34, pp.3, 2013, https://doi.org/10.1007/s10483-013-1669-8
- Dynamic analysis of embedded curved double‐walled carbon nanotubes based on nonlocal Euler‐Bernoulli Beam theory vol.8, pp.4, 2012, https://doi.org/10.1108/15736101211281470
- Investigating the influence of surface deviations in double walled carbon nanotube based nanomechanical sensors vol.89, 2014, https://doi.org/10.1016/j.commatsci.2014.03.034
- Forced vibrations of fluid-conveyed double piezoelectric functionally graded micropipes subjected to moving load vol.21, pp.8, 2017, https://doi.org/10.1007/s10404-017-1963-y
- Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle vol.50, pp.7, 2011, https://doi.org/10.1016/j.commatsci.2011.02.017
- Modelling the nonlinear behaviour of double walled carbon nanotube based resonator with curvature factors vol.84, 2016, https://doi.org/10.1016/j.physe.2016.05.018
- Dynamic response of porous functionally graded material nanobeams subjected to moving nanoparticle based on nonlocal strain gradient theory vol.4, pp.11, 2017, https://doi.org/10.1088/2053-1591/aa9765
- The thermal effect on vibration of zigzag single walled carbon nanotubes using nonlocal Timoshenko beam theory vol.51, pp.1, 2012, https://doi.org/10.1016/j.commatsci.2011.07.021
- Fundamental size dependent natural frequencies of non-uniform orthotropic nano scaled plates using nonlocal variational principle and finite element method vol.37, pp.10-11, 2013, https://doi.org/10.1016/j.apm.2013.02.015
- Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory vol.56, 2014, https://doi.org/10.1016/j.compositesb.2013.08.082
- Nonlocal buckling of double-nanoplate-systems under biaxial compression vol.44, pp.1, 2013, https://doi.org/10.1016/j.compositesb.2012.07.053
- Beam structural system moving forces active vibration control using a combined innovative control approach vol.12, pp.2, 2013, https://doi.org/10.12989/sss.2013.12.2.121
- Frequency domain analysis of nonlocal rods embedded in an elastic medium vol.59, 2014, https://doi.org/10.1016/j.physe.2013.11.001
- Recent Researches on Nonlocal Elasticity Theory in the Vibration of Carbon Nanotubes Using Beam Models: A Review vol.24, pp.3, 2017, https://doi.org/10.1007/s11831-016-9179-y
- A NEW NONLOCAL BEAM THEORY WITH THICKNESS STRETCHING EFFECT FOR NANOBEAMS vol.12, pp.04, 2013, https://doi.org/10.1142/S0219581X13500257
- Nonlocal vibration of bonded double-nanoplate-systems vol.42, pp.7, 2011, https://doi.org/10.1016/j.compositesb.2011.06.009
- Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods vol.61, 2012, https://doi.org/10.1016/j.commatsci.2012.04.001
- Longitudinal vibration analysis for microbars based on strain gradient elasticity theory vol.20, pp.4, 2014, https://doi.org/10.1177/1077546312463752
- Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes vol.57, 2014, https://doi.org/10.1016/j.compositesb.2013.08.020
- Nonlocal buckling behavior of bonded double-nanoplate-systems vol.110, pp.8, 2011, https://doi.org/10.1063/1.3644908
- Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory vol.97, 2013, https://doi.org/10.1016/j.compstruct.2012.10.038
- Thermal Buckling Behavior of Nanobeams Using an Efficient Higher-Order Nonlocal Beam Theory vol.3, pp.3, 2013, https://doi.org/10.1061/(ASCE)NM.2153-5477.0000057
- Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach vol.105, 2016, https://doi.org/10.1016/j.ijengsci.2016.04.013
- On the influence of centerline strain on the stability of a bimorph piezo-actuated microbeam vol.18, pp.6, 2011, https://doi.org/10.1016/j.scient.2011.11.004
- Various gradient elasticity theories in predicting vibrational response of single-walled carbon nanotubes with arbitrary boundary conditions vol.19, pp.5, 2013, https://doi.org/10.1177/1077546312439223
- Sound wave propagation in zigzag double-walled carbon nanotubes embedded in an elastic medium using nonlocal elasticity theory vol.48, 2013, https://doi.org/10.1016/j.physe.2012.11.006
- Thermal Effect on Vibration Characteristics of Armchair and Zigzag Single-Walled Carbon Nanotubes Using Nonlocal Parabolic Beam Theory vol.23, pp.3, 2015, https://doi.org/10.1080/1536383X.2013.787605
- On localized modes of free vibrations of single-walled carbon nanotubes embedded in nonhomogeneous elastic medium vol.94, pp.1-2, 2014, https://doi.org/10.1002/zamm.201200140
- Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity vol.48, pp.2, 2013, https://doi.org/10.12989/sem.2013.48.2.195
- Dynamic analysis of isotropic nanoplates subjected to moving load using state-space method based on nonlocal second order plate theory vol.29, pp.6, 2015, https://doi.org/10.1007/s12206-015-0539-6
- Free vibration analysis of a rotating nanoshaft based SWCNT vol.132, pp.12, 2017, https://doi.org/10.1140/epjp/i2017-11783-2
- Sound wave propagation in armchair single walled carbon nanotubes under thermal environment vol.110, pp.12, 2011, https://doi.org/10.1063/1.3671636
- Forced vibration of two coupled carbon nanotubes conveying lagged moving nano-particles vol.68, 2015, https://doi.org/10.1016/j.physe.2014.12.021
- An analytical study on the nonlinear vibration of a double-walled carbon nanotube vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.987
- Characterizing the nonlinear behaviour of double walled carbon nanotube based nano mass sensor vol.23, pp.6, 2017, https://doi.org/10.1007/s00542-016-3099-5
- Effect of the Chirality on Critical Buckling Temperature of Zigzag Single-walled Carbon Nanotubes Using the Nonlocal Continuum Theory vol.23, pp.6, 2015, https://doi.org/10.1080/1536383X.2012.749457
- A nonlocal Levinson beam model for free vibration analysis of zigzag single-walled carbon nanotubes including thermal effects vol.151, pp.20, 2011, https://doi.org/10.1016/j.ssc.2011.06.038
- Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment vol.4, pp.8, 2017, https://doi.org/10.1088/2053-1591/aa7d89
- Dynamical properties of nanotubes with nonlocal continuum theory: A review vol.55, pp.7, 2012, https://doi.org/10.1007/s11433-012-4781-y
- Physical insight into Timoshenko beam theory and its modification with extension vol.48, pp.4, 2013, https://doi.org/10.12989/sem.2013.48.4.519
- Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory vol.38, pp.24, 2014, https://doi.org/10.1016/j.apm.2014.03.036
- Dynamic response of nanobeams subjected to moving nanoparticles and hygro-thermal environments based on nonlocal strain gradient theory pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1444234
- The computation of bending eigenfrequencies of single-walled carbon nanotubes based on the nonlocal theory vol.9, pp.2, 2018, https://doi.org/10.5194/ms-9-349-2018
- Vibration of initially stressed carbon nanotubes under magneto-thermal environment for nanoparticle delivery via higher-order nonlocal strain gradient theory vol.133, pp.6, 2018, https://doi.org/10.1140/epjp/i2018-12039-5
- Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes vol.1, pp.1, 2013, https://doi.org/10.12989/anr.2013.1.1.001
- Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams vol.23, pp.3, 2011, https://doi.org/10.12989/scs.2017.23.3.339
- Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM vol.25, pp.2, 2011, https://doi.org/10.12989/scs.2017.25.2.141
- Size dependent bending analysis of micro/nano sandwich structures based on a nonlocal high order theory vol.27, pp.3, 2018, https://doi.org/10.12989/scs.2018.27.3.371
- Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter vol.28, pp.1, 2011, https://doi.org/10.12989/scs.2018.28.1.013
- Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions vol.28, pp.2, 2018, https://doi.org/10.12989/scs.2018.28.2.149
- Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop's theory vol.28, pp.6, 2018, https://doi.org/10.12989/scs.2018.28.6.749
- Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory vol.22, pp.5, 2011, https://doi.org/10.12989/sss.2018.22.5.527
- Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation vol.70, pp.1, 2019, https://doi.org/10.12989/sem.2019.70.1.055
- Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix vol.70, pp.3, 2019, https://doi.org/10.12989/sem.2019.70.3.269
- Some closed-form solutions for static, buckling, free and forced vibration of functionally graded (FG) nanobeams using nonlocal strain gradient theory vol.224, pp.None, 2019, https://doi.org/10.1016/j.compstruct.2019.111041
- Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load vol.33, pp.1, 2011, https://doi.org/10.12989/scs.2019.33.1.123
- Static stability analysis of axially functionally graded tapered micro columns with different boundary conditions vol.33, pp.1, 2019, https://doi.org/10.12989/scs.2019.33.1.133
- Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity vol.7, pp.6, 2011, https://doi.org/10.12989/anr.2019.7.6.431
- Effects of nonlocality and two temperature in a nonlocal thermoelastic solid due to ramp type heat source vol.27, pp.1, 2020, https://doi.org/10.1080/25765299.2020.1825157
- An inclined FGM beam under a moving mass considering Coriolis and centrifugal accelerations vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.061
- Time harmonic interactions in non local thermoelastic solid with two temperatures vol.74, pp.3, 2011, https://doi.org/10.12989/sem.2020.74.3.341
- Effect of Pasternak foundation: Structural modal identification for vibration of FG shell vol.9, pp.6, 2020, https://doi.org/10.12989/acc.2020.9.6.569
- Runge-Kutta method for flow of dusty fluid along exponentially stretching cylinder vol.36, pp.5, 2011, https://doi.org/10.12989/scs.2020.36.5.603
- Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile vol.38, pp.1, 2011, https://doi.org/10.12989/scs.2021.38.1.033
- Parametric vibration analysis of single-walled carbon nanotubes based on Sanders shell theory vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.165
- On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes vol.38, pp.5, 2011, https://doi.org/10.12989/scs.2021.38.5.533
- Thermal stress effects on microtubules based on orthotropic model: Vibrational analysis vol.11, pp.3, 2011, https://doi.org/10.12989/acc.2021.11.3.255
- Effect of suction on flow of dusty fluid along exponentially stretching cylinder vol.10, pp.3, 2011, https://doi.org/10.12989/anr.2021.10.3.263
- Aerodynamic Analysis of Temperature-Dependent FG-WCNTRC Nanoplates under a Moving Nanoparticle using Meshfree Finite Volume Method vol.134, pp.None, 2011, https://doi.org/10.1016/j.enganabound.2021.10.021