References
- Ellero M., Serrano, M. and Espanol, P. (2007), "Incompressible smoothed particle hydrodynamics", J. Comput. Phys., 226(2), 1731-1752. https://doi.org/10.1016/j.jcp.2007.06.019
- Gingold, R.A. and Monaghan, J.J. (1977), "Smoothed particle hydrodynamics: theory and application to nonspherical stars", Mon. Not. R. Astron. Soc., 181, 375-89. https://doi.org/10.1093/mnras/181.3.375
- Gotoh, H., Sakai, T. (2006), "Key issues in the particle method for computation of wave breaking", Coast. Eng., 53(2-3), 171-179. https://doi.org/10.1016/j.coastaleng.2005.10.007
- Greenhow, M. and Lin W. (1983), "Non-linear free surface effects: experiments and theory", Report Number 83-19, Department of Ocean Engineering, Massachusetts Institute of Technology.
- Greenhow, M. and Moyo, S. (1997), "Water entry and exit of horizontal circular cylinders", Philos. T. R. Soc. A., 355(1724), 551-563. https://doi.org/10.1098/rsta.1997.0024
- Hirt, C.W. and Nichols, B.D. (1981), "Volume of fluid (VOF) method for dynamics of free boundaries", J. Comput. Phys., 39(1), 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
- Hui, Sun and Odd, M. Faltinsen (2006), "Water impact of horizontal circular cylinders and cylindrical shells", Appl. Ocean Res., 28 (5), 299-311. https://doi.org/10.1016/j.apor.2007.02.002
- Khayyer, A., Gotoh, H. and Shao, S. (2008), "Corrected incompressible SPH method for accurate water-surface tracking in breaking waves", Coast. Eng., 55(3), 236-250. https://doi.org/10.1016/j.coastaleng.2007.10.001
- Khayyer, A., Gotoh, H. and Shao, S. (2009), "Enhanced predictions of wave impact pressure by improved incompressible SPH methods", Appl. Ocean Res., 31(2), 111-131. https://doi.org/10.1016/j.apor.2009.06.003
- Kleefsman, K.M.T., Fekken, G., Veldman, A.E.P., Iwanowski, B. and Buchner, B. (2005), "A volume-of-fluid based simulation method for wave impact problems", J. Comput. Phys., 206(1), 363-393. https://doi.org/10.1016/j.jcp.2004.12.007
- Koshizuka, S,, Nobe, A. and Oka, Y. (1998), "Numerical analysis of breaking waves using the moving particle semiimplicit method", Int. J. Numer. Meth. Fl., 26, 751-769. https://doi.org/10.1002/(SICI)1097-0363(19980415)26:7<751::AID-FLD671>3.0.CO;2-C
- Koshizuka, S. and Oka, Y. (1996), "Moving-particle semi-implicit method for fragmentation of incompressible fluid", Nucl. Sci. Eng., 123(3), 421-434. https://doi.org/10.13182/NSE96-A24205
- Lee, E.S., Laurence, D., Stansby, P.K., Violeau, D. and Moulinec C. (2006), "2D flow past a square cylinder in a closed channel", SPHERIC Newsletter, No. 3.
- Lee, E.S., Moulinec, C., Xu, R., Violeau, D., Laurence, D. and Stansby P. (2008), "Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method", J. Comput. Phys., 227 (18), 8417-8436. https://doi.org/10.1016/j.jcp.2008.06.005
- Lee, B.H., Park, J.C., Kim, M.H., Jung, S.J., Ryu, M.C. and Kim, Y.S. (2010), "Numerical simulation of impact loads using a particle method", Ocean Eng., 37(2-3), 164-173. https://doi.org/10.1016/j.oceaneng.2009.12.003
- Lin, P.Z. (2007), "A fixed-grid model for simulation of a moving body in free surface flows", Comput. Fluids, 36(3), 549-561. https://doi.org/10.1016/j.compfluid.2006.03.004
- Liu, H., Gong, K. and Wang, B.L. (2009), "Modelling water entry of a wedge by multiphase SPH method", SPHERIC Newsletter, No. 9.
- Lucy, L.B. (1977), "A numerical approach to the testing of the fusion process", Astron J., 88, 1013-24.
- Miyata, H. and Park, J.C. (1995), Chap.5, "Wave breaking simulation", In: (Ed. Rahman, M.), Potential Flow of Fluids, Computational Mechanics Publications, UK, 149-176.
- Morris, J.P., Fox, P.J. and Zhu, Y. (1997), "Modeling Low Reynolds Number Incompressible Flows Using SPH", J. Comput. Phys., 136(1), 214-226. https://doi.org/10.1006/jcph.1997.5776
- Oger, G., Doring, M., Alessandrini, B. and Ferrant, P. (2006), "Two-dimensional SPH simulations of wedge water entries", J. Comput. Phys., 213(2), 803-822. https://doi.org/10.1016/j.jcp.2005.09.004
- Panahi, R., Jahanbakhsh, E. and Seif, M.S. (2006), "Development of a VoF-fractional step solver for floating body motion simulation", Appl. Ocean Res., 28(3), 171-181. https://doi.org/10.1016/j.apor.2006.08.004
- Shao, S.D. and Lo, E.Y.M. (2003), "Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface", Adv. Water Resour., 26(7), 787-800. https://doi.org/10.1016/S0309-1708(03)00030-7
- Shao, S. (2009), "Incompressible SPH simulation of water entry of a free-falling object", Int. J. Numer. Meth. Fl., 59(1), 91-115. https://doi.org/10.1002/fld.1813
- Sussman, M., Smereka, P. and Osher, S. (1994), "A level set approach for computing solutions to incompressible two-phase flow", J. Comput. Phys., 114, 146-159. https://doi.org/10.1006/jcph.1994.1155
- Tanaka, M. and Masunaga, T. (2010), "Stabilization and smoothing of pressure in MPS method by Quasi-Compressibility", J. Comput. Phys., 229(11), 4279-4290. https://doi.org/10.1016/j.jcp.2010.02.011
- Tyvand, P. and Miloh, T. (1995), "Free-surface flow due to impulsive motion of a submerged circular cylinder", J. Fluid Mech., 286, 67-101. https://doi.org/10.1017/S0022112095000656
- Violeau, D. and Issa, R. (2007), "Numerical modelling of complex turbulent free-surface flows with the SPH method: an overview", Int. J. Numer. Meth. Fl., 53(2), 277-304. https://doi.org/10.1002/fld.1292
- Zhao, R., Faltinsen, O. and Aarsnes, J. (1997), "Water entry of arbitrary two-dimensional sections with and without flowA@separation", Twenty-first Symposium on Naval Hydrodynamics, Trondheim, Norway, 408-423.
Cited by
- TSUNAMI RUN-UP SIMULATION BY ISPH METHOD WITH HIGH RESOLUTION GEOMETRICAL MODELING vol.69, pp.4, 2013, https://doi.org/10.2208/jscejseee.69.I_622
- A FLUID-RIGID BODY SIMULATION BY USING THE SPH METHOD AND ITS APPLICATION TO BRIGDE RUNOFF SIMULATION vol.70, pp.2, 2014, https://doi.org/10.2208/jscejam.70.I_329
- Numerical simulations of impact flows with incompressible smoothed particle hydrodynamics vol.28, pp.6, 2014, https://doi.org/10.1007/s12206-014-0120-8
- Analysis of unsteady mixed convection in lid-driven cavity included circular cylinders motion using an incompressible smoothed particle hydrodynamics method vol.25, pp.8, 2015, https://doi.org/10.1108/HFF-10-2014-0305
- Review of ship slamming loads and responses vol.16, pp.4, 2017, https://doi.org/10.1007/s11804-017-1437-3
- Double-diffusive natural convection in an enclosure filled with nanofluid using ISPH method vol.55, pp.4, 2016, https://doi.org/10.1016/j.aej.2016.06.036
- A numerical study on unsteady natural/mixed convection in a cavity with fixed and moving rigid bodies using the ISPH method 2018, https://doi.org/10.1108/HFF-02-2017-0058
- An incompressible smoothed particle hydrodynamics method for natural/mixed convection in a non-Darcy anisotropic porous medium vol.77, 2014, https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.044
- Double-diffusive natural convection in an enclosure including/excluding sloshing rod using a stabilized ISPH method vol.73, 2016, https://doi.org/10.1016/j.icheatmasstransfer.2016.01.008
- Modelling of Non-Darcy Flows through Porous Media Using Extended Incompressible Smoothed Particle Hydrodynamics vol.67, pp.3, 2015, https://doi.org/10.1080/10407790.2014.955772
- Modeling of multi-phase flows and natural convection in a square cavity using an incompressible smoothed particle hydrodynamics vol.25, pp.3, 2015, https://doi.org/10.1108/HFF-05-2014-0161
- ISPH method for double-diffusive natural convection under cross-diffusion effects in an anisotropic porous cavity/annulus vol.26, pp.1, 2016, https://doi.org/10.1108/HFF-03-2015-0085
- Three-Dimensional Incompressible Smoothed Particle Hydrodynamics for Simulating Fluid Flows Through Porous Structures vol.110, pp.3, 2015, https://doi.org/10.1007/s11242-015-0568-8
- Numerical Analysis of Liquid Sloshing Using the Incompressible Smoothed Particle Hydrodynamics Method vol.7, pp.2, 2015, https://doi.org/10.1155/2014/765741
- Development of Empirical Formulation for Bow Flare Slamming and Deck Wetness for Displacement Vessels pp.1993-5048, 2018, https://doi.org/10.1007/s11804-018-0045-1
- Towards development of a reliable fully-Lagrangian MPS-based FSI solver for simulation of 2D hydroelastic slamming vol.7, pp.3, 2011, https://doi.org/10.12989/ose.2017.7.3.299
- Water entry of decelerating spheres simulations using improved ISPH method vol.30, pp.6, 2011, https://doi.org/10.1007/s42241-018-0133-3
- Fluid Structure Interaction of Buoyant Bodies with Free Surface Flows: Computational Modelling and Experimental Validation vol.11, pp.5, 2011, https://doi.org/10.3390/w11051048
- Mixed Convection in an Inclined Nanofluid Filled-Cavity Saturated With a Partially Layered Porous Medium vol.11, pp.4, 2011, https://doi.org/10.1115/1.4042352
- Natural convection in a nanofluid-filled cavity with solid particles in an inner cross shape using ISPH method vol.141, pp.None, 2011, https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.090
- Natural Convection from Heated Shape in Nanofluid-Filled Cavity Using Incompressible Smoothed Particle Hydrodynamics vol.33, pp.4, 2011, https://doi.org/10.2514/1.t5665
- Natural convection from cross blade inside a nanofluid-filled cavity using ISPH method vol.30, pp.10, 2011, https://doi.org/10.1108/hff-12-2019-0863
- Motion of circular cylinders during natural convection flow in X-shaped cavity filled with a nanofluid using ISPH method vol.31, pp.5, 2021, https://doi.org/10.1108/hff-04-2020-0231
- ISPH simulations of natural convection from rotating circular cylinders inside a horizontal wavy cavity filled with a nanofluid and saturated by a heterogeneous porous medium vol.230, pp.5, 2021, https://doi.org/10.1140/epjs/s11734-021-00050-y