참고문헌
- Abramson, H.N. (1966), "The dynamics of liquids in moving containers", Report SP 106, NASA.
- Akyildiz, H. and Unal E. (2005), "Experimental investigation of pressure distribution on rectangular tank due to sloshing" , Ocean Eng., 32(11-12), 1503-1516. https://doi.org/10.1016/j.oceaneng.2004.11.006
- Akyildiz, H. (2002), "Experimental investigation of pressure distribution on a cylinder due to the wave diffraction in a finite water depth", Ocean Eng., 29(9), 1119-1132. https://doi.org/10.1016/S0029-8018(01)00061-0
- Baeten, A. (2009), "Optimization of LNG tank shape in terms of sloshing impact pressure", Proceedings of the 19th International Offshore and Polar Engineering Conference (ISOPE), Osaka, Japan, June 21-26.
- Behr, M. and Abraham F. (2002), "Free-surface flow simulations in the presence of inclined walls", Comput. Method. Appl. M., 191(47-48), 5467-5483. https://doi.org/10.1016/S0045-7825(02)00444-9
- Bogaert H., Leonard S., Brosset L. and Kaminski ML. (2010), "Sloshing and scaling: results from the sloshel project", Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference, Beijing, China.
- Bradford, S.F. (1999), "Numerical simulations of liquid sloshing in microgravity field", Naval Research Laboratory, NRL/MR/7260-99-8387, 1-15.
- Brosset, L., Mravak, Z., Kaminski, M., Collins, S. and Finnigan, T. (2009), "Overview of Sloshel project", Proceedings of the19th International Offshore and Polar Enineering Conference, Osaka, Japan, ISOPE.
- Bugg, F. (1970), "Determination of liquid oscillation frequency in an inclined right circular cylinder", NASA TM X-64540.
- Colagrossi A., Palladino F., Greco M., Lugni C. and Faltinsen OM. (2004), "Experimental and numerical investigation of 2D sloshing: scenarios near the critical filling depth", Proceedings of the 19th International Workshop on Water Waves and Floating Body, Cortona, Italy.
- Chiba, M. (1992), "Nonlinear hydroelastic vibration of a cylindrical tank with elastic bottom containing liquid. Part I Experiment", J. Fluid. Struct., 6(2), 181-206. https://doi.org/10.1016/0889-9746(92)90044-4
- Cole, H.A. (1966), "Baffle thickness effects in fuel sloshing experiments", NASA TN D-3716.
- Demirbilek Z, (1982), "A linear theory of viscous liquid sloshing", Ph.D.thesis, Texas A&M University, College Station, Texas, USA.
- Demirbilek Z, (1983), "Energy dissipation in sloshing waves in a rolling rectangular tank-III.-Results and applications", Ocean Eng., 10(5), 375-382. https://doi.org/10.1016/0029-8018(83)90006-9
- Dias F, Dutykh D and Ghidaglia J.M. (2010), "A two-fluid model for violent aerated flows", Comput. Fluids, 39(2), 283-293. https://doi.org/10.1016/j.compfluid.2009.09.005
- Dodge, F. (1966), "Experimental and theoretical studies of liquid sloshing at simulated low gravities", Technical Report No. 2, Contract No. NAS8-20290, National Aeronautics and Space Administration, Alabama.
- Drosos, G.C., Dimas A.A. and Karabalis D.L. (2008), "Discrete models for seismic analysis of liquid storage tanks of arbitrary shape and fill height", J. Press. Vess-T. ASME., 130(4), 041801-1-12. https://doi.org/10.1115/1.2967834
- Faltinsen, O.M. (1974), "A nonlinear theory of sloshing in rectangular tanks", J. Ship Res., 18(4), 224-241.
- Feng, G.C. (1973), "Dynamic loads due to moving liquid", AIAA Paper No: 73, 409.
- Frandsen, J.B. and Borthwick, A.G.L. (2003), "Simulation of sloshing motions in fixed and vertically excited containers using A 2-D inviscid o -transformed finite difference solver", J. Fluid. Struct., 18(2), 197-214. https://doi.org/10.1016/j.jfluidstructs.2003.07.004
- Fujino, Y., Sun, L. and Pacheco, B.M. (1992), "Tuned liquid damper (TLD) for suppressing horizontal motion of structures", J. Eng. Mech., 118(10), 2017-2030. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:10(2017)
- Godderidge, B., Turnock, S., Earl C. and Tan M. (2009), "The effect of fluid compressibility on the simulation of sloshing impacts", Ocean Eng., 36(8), 578-587. https://doi.org/10.1016/j.oceaneng.2009.02.004
- Godderidge, B., Turnock, S., Tan, M. and Earl, C. (2009), "An investigation of multiphase CFD modelling of a lateral sloshing tank", Comput. Fluids, 38(2),183-193. https://doi.org/10.1016/j.compfluid.2007.11.007
- Graczyk, M. Moan, T. and Rognebakke, O. (2006), "Probabilistic analysis of characteristic pressure for LNG tanks", J. Offshore Mech. Arct.,128(2), 133-144. https://doi.org/10.1115/1.2185128
- Graham, E.W. and Rodriquez, A.M. (1952), "The characteristics of fuel motion which affect airplane dynamics", J. Appl. Mech., 19(3), 381-388.
- Grundelius, M. and Bernhardsson, B. (1999), "Control of liquid slosh in an industrial packaging machine", Proceedings of the IEEE International Conference on Control Applications, 1654-1659.
- Guzel, U.B., Gradinscak M., Semercigil S.E. and Turan O.F. (2004), "Control of liquid sloshing in flexible containers part 1. Added mass", Proceedings of the 15th Australasian Fluid Mechanics Conference.
- Haroun, M.A. (1980), "Dynamic analysis of liquid storage tanks", Report EERL, No. 80-4, California Institute of Technology, Pasadena, Calif.
- Haroun, M.A. (1983), "Vibration studies and tests of liquid storage tanks", Earthq. Eng. Struct. D., 11(2), 179-206. https://doi.org/10.1002/eqe.4290110204
- Hashimoto, H., and Sudo, S. (1988), "Violent liquid sloshing in vertically excited cylindrical containers", Exp. Therm. Fluid Sci., 1(2), 159-169. https://doi.org/10.1016/0894-1777(88)90033-7
- Hatayama, K., Zama, S., Nishi, H., Yamada, M., Hirokawa, M. and Inoue, R. (2005), "The damages of oil storage tanks during the 2003 tokachi-oki earthquake and the long period ground motions", Proceedings of the JSCE-AIJ Joint Symposium on Huge Subduction Earthquakes-Wide Area Strong Ground Motion Prediction.
- Hirt, C.W. and Nichols, B.D. (1981), "Volume of fluid (VOF) method for the dynamics of free boundaries", J. Comp. Phys., 39, 201-205. https://doi.org/10.1016/0021-9991(81)90145-5
- Housner, G.W. (1957), "Dynamic pressures on accelerated fluid containers", B. Seismol. Soc. Am ., 47(1), 15-35.
- Housner, G.W. (1963), "The dynamic behavior of water tanks", B. Seismol. Soc. Am., 53(2), 381-387.
- Hwang, Y., Jung, J., Kim, D. and Ryu, M. (2008), "An experimental study and numerical simulation on sloshing impact pressures with two identically shaped rectangular 2-dimensional model tanks with different sizes", Proceedings of the Eighteenth International Offshore and Polar Engineering Conference, Canada.
- Jacobsen, L.S. and Ayre, R.S. (1951), "Hydrodynamic experiments with rigid cylindrical tanks subjected to transient motions", Bulletin of the Seismological Society of America, 41(4), 313-346.
- Kimura, K., Ogura, K., Mieda, T., Yamamoto, K., Eguchi, Y., Moriya, S., Hagiwara, Y., Takakuwa, M., Kodama, T. and Kolke, K. (1995), "Experimental and analytical studies on the multi-surface sloshing characteristics of a top entry loop type FBR", Nucl. Eng. Des., 157(1-2), 49-63. https://doi.org/10.1016/0029-5493(95)00982-I
- Labus, T. (1969), "Natural frequency of liquids in annular cylinders under low gravitational conditions", Lewis Research Center, NASA TN-D-5412.
- Lamb, H., (1932), Hydrodynamics, (6th ed.), Cambridge University Press, Cambridge.
- Lee, S.J., Kim, M.H., Lee, D.H., Kim, J.W. and Kim, J.H. (2007), "The effects of LNG-tank sloshing on the global motions of LNG carriers", Ocean Eng., 34(1), 10-20. https://doi.org/10.1016/j.oceaneng.2006.02.007
- Liu, D., and Lin, P. (2008), "A numerical study of three-dimensional liquid sloshing in tanks", J. Comput. Phys., 227(8), 3921-3939. https://doi.org/10.1016/j.jcp.2007.12.006
- Luppes, R., Helder, J.A. and Veldman, A.E.P. (2006), "The numerical simulation of liquid sloshing in microgravity", Proceedings of the European Conference on Computational Fluid Dynamics, 1-19.
- Matsui, T. (2007), "Sloshing in a cylindrical liquid storage tank with a floating roof under seismic excitation", J. Press. Vess-T. ASME, 129(4), 557-566. https://doi.org/10.1115/1.2767333
- Matsui, T. (2009), "Sloshing in a cylindrical liquid storage tank with a single-deck type floating roof under seismic excitation", J. Press. Vess-T. ASME, 131(2), 021303-1-10. https://doi.org/10.1115/1.3062939
- Moaleji, R. and Greig A.R. (2007), "On the development of ship anti-roll tanks", Ocean Eng., 34(1), 103-121. https://doi.org/10.1016/j.oceaneng.2005.12.013
- Modi, V.J. and Munshi S.R. (1998), "An efficient liquid sloshing damper for vibration control", J. Fluid. Struct.,12(8), 1055-1071. https://doi.org/10.1006/jfls.1998.0182
- Nasar, T., Sannasiraj, S.A., and Sundar, V. (2008), "Experimental study of liquid sloshing dynamics in a barge carrying tank", Fluid Dyn. Res., 40(6), 427-458. https://doi.org/10.1016/j.fluiddyn.2008.02.001
- Pal, N.C., Bhattacharyya, S.K. and Sinha, R.K. (2001), "Experimental investigation of slosh dynamics of liquidfilled containers", Exp. Mech., 41(1), 63-69. https://doi.org/10.1007/BF02323106
- Panigrahy, P.K. (2006), "Development of a test setup to study the sloshing behaviour of liquids in baffled tanks", M.Tech thesis, IIT Guwahati.
- Panigrahy, P.K., Saha U.K. and Maity D. (2009), "Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks", Ocean Eng., 36(3-4), 213-222. https://doi.org/10.1016/j.oceaneng.2008.11.002
- Papell, S.S. (1965), "Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles", U.S. Patent, 3215,572.
- Partom, L.S. (1987), "Application of the VOF method to the sloshing of a fluid in a partially filled cylindrical container", Int. J. Numer. Meth. Fl., 7(6), 535-550. https://doi.org/10.1002/fld.1650070602
- Popov, G., Sankar, S., Sankar, T.S. and Vatista, G.H. (1992), "Liquid sloshing in rectangular road containers", Comput. Fluids, 21(4), 551-569. https://doi.org/10.1016/0045-7930(92)90006-H
- Rhee, S.H. (2005), "Unstructured grid-based Reynolds-averaged Navier-Stokes method for liquid tank sloshing", J. Fluis Eng., 127(3), 572-582. https://doi.org/10.1115/1.1906267
- Romero, J.A., Ramyrez, O., Fortanell, J.M., Martinez, M. and Lozano, A. (2005), "Analysis of lateral sloshing forces within road containers with high fill levels", Proceedings of the IMechE, Part D: J. Automobile Engineering, 220, 303-312.
- Rosenweig, R.E., Popplewell, J. and Johnston, R.J. (1997), "Magnetic fluid motion in rotating field", J. Magnet. Magnet. Mater., 85(1-3), 171-180.
- Sakamoto, D., Oshima N. and Fukuda T. (2001), "Tuned sloshing damper using electro-rheological fluid", Smart Mater. Struct.,10(5), 963-969. https://doi.org/10.1088/0964-1726/10/5/312
- Sawada, T., Kikura, H., Shibata, S. and Tanahashi, T. (1993), "Lateral sloshing of a magnetic fluid in a container", Journal of Magnetism and Magnetic Materials, 122(1-3), 424-427. https://doi.org/10.1016/0304-8853(93)91124-P
- Sawada, T., Ohira, Y. and Houda, H. (2002), "Sloshing motion of the magnetic fluid in a cylindrical container due to the horizontal oscillation", Energ. Convers. Manage., 43(3), 299-308. https://doi.org/10.1016/S0196-8904(01)00103-0
- Sayar, B.A. and Baumgarten J.R. (1982), "Linear and nonlinear analysis of fluid slosh dampers", AIAA J., 20(11), 1534. https://doi.org/10.2514/3.7990
- Snyder, H.A. (1999), "Sloshing in microgravity", Cryogenics, 39, 1047-1055. https://doi.org/10.1016/S0011-2275(99)00120-4
- Snyder, H.A. (2004), "Effect of rotation on sloshing in low-gravity", Cryogenics, 44, 525-536. https://doi.org/10.1016/j.cryogenics.2004.02.011
- Sudo, S., Hashimoto, H., Ikeda, A. and Katagiri, K. (1987), "Some studies on magnetic Liquid Sloshing", J. Magnet. Magnet. Mater, 65, 219-222. https://doi.org/10.1016/0304-8853(87)90036-9
- Sweedan, A.M.J. (2009), "Equivalent mechanical model for seismic forces in combined tanks subjected to vertical earthquake excitation", Thin Wall Struct., 47(8-9), 942-952. https://doi.org/10.1016/j.tws.2009.02.001
- Taniguchi, T. (2004), "Rocking behavior of unanchored flat-bottom cylindrical shell tanks under action of horizontal base excitation", Eng. Struct., 26(4), 415-426. https://doi.org/10.1016/j.engstruct.2003.10.013
- Terashima, K. and Yano, K. (2001), "Sloshing analysis and suppression control of tilting-type automatic pouring machine", Control. Eng. Pract., 9(6), 607-620. https://doi.org/10.1016/S0967-0661(01)00023-5
- Topliss, M.E., Cooker, M.J. and Peregrine, D.H. (1992), "Pressure oscillations during wave impact on vertical walls", Proceedings of the 23th International Conference on Coastal Engineering, ASCE.
- Ueda, T., Nakagaki, R. and Koshida, K. (1992), "Suppression of wind-induced vibration by dynamic dampers in tower-like structures", J. Wind Eng. Ind. Aerod., 41-44, 1907-1918.
- Utsumi, M. (2000), "Low-gravity sloshing in an axisymmetrical container excited in the axial direction", J. Appl. Mech., 67(2), 344-354. https://doi.org/10.1115/1.1307500
- Utsumi, M. (2004), "A mechanical model for low-gravity sloshing in an axisymmetric tank", J. Appl. Mech., 71(5), 724-730. https://doi.org/10.1115/1.1794700
- Utsumi, M. (2008), "Low gravity low-gravity slosh analysis for cylindrical tanks with hemiellipsoidal top and bottom", J. Spacecraft Rockets, 45(4), 813-821. https://doi.org/10.2514/1.35057
- Utsumi, M. and Ishida K. (2008), "Vibration analysis of a floating roof taking into account the nonlinearity of sloshing", J. Appl. Mech., 75(4), 041008-1-10. https://doi.org/10.1115/1.2912739
- Valentine, D.T. (2005), "Numerical investigation of two-dimensional sloshing: nonlinear internal waves", J. Offshore Mech. Arct.,127(4), 300-305. https://doi.org/10.1115/1.2073154
- Vandiver, J.K. and Mitome, S. (1982), "Effect of liquid storage tanks on the dynamic response of offshore platforms. In: C.L. Kirk, Editor, 1st ed., Dynamic Analysis of Offshore Structures: Recent Developments, Progress in Engineering Sciences 1, CML Publications, Southampton, 25-32.
- Veldman, A.E.P., Gerrits, J., Luppes, R., Helder, J.A. and Vreeburg, J.P.B. (2007), "The numerical simulation of iquid sloshing on board spacecraft", J. Comput. Phys., 224(1), 82-99. https://doi.org/10.1016/j.jcp.2006.12.020
- Warnitchai, P. and Pinkaew T. (1998), "Modeling of the liquid sloshing in rectangular tanks with flow damping device", Eng. Struct., 20(2), 593-600. https://doi.org/10.1016/S0141-0296(97)00068-0
- Wiesche, S. (2006), "Noise due to sloshing with in automotive fuel tanks", Forsch Ingenieurwes, 70(1), 13-24.
- Winslow, W.M. (1949), "Induced vibrations of suspensions", J. Appl. Phys., 20, 1137-1140. https://doi.org/10.1063/1.1698285
- Yano, K. and Terashima, K. (2005), "Sloshing suppression control of liquid transfer systems considering a 3-D transfer path", IEEE/ASME Transactions on Mechatronics, 10(1), 8-16. https://doi.org/10.1109/TMECH.2004.839033
- Yuanjun, H., Xingrui, M., Pingping, W. and Benli, W. (2007), "Low-gravity liquid nonlinear sloshing analysis in a tank under pitching excitation", J. Sound Vib., 299(1-2), 164-177. https://doi.org/10.1016/j.jsv.2006.07.003
피인용 문헌
- Oscillations in a half-empty bottle vol.86, pp.2, 2018, https://doi.org/10.1119/1.5009664
- Fluid-structure interaction analysis of sloshing in an annular - sectored water pool subject to surge motion vol.3, pp.3, 2013, https://doi.org/10.12989/ose.2013.3.3.181
- Effect of higher modes and multi-directional seismic excitations on power plant liquid storage pools vol.8, pp.3, 2015, https://doi.org/10.12989/eas.2015.8.3.779
- Linearized formulation for fluid–structure interaction: Application to the linear dynamic response of a pressurized elastic structure containing a fluid with a free surface vol.332, pp.10, 2013, https://doi.org/10.1016/j.jsv.2012.07.036
- Liquid Sloshing in Fuel Storage Bays of Advanced Reactor Subjected to Earthquake Loading vol.144, 2016, https://doi.org/10.1016/j.proeng.2016.05.118
- An analytical solution for free liquid sloshing in a finite-length horizontal cylindrical container filled to an arbitrary depth vol.48, 2017, https://doi.org/10.1016/j.apm.2017.03.060
- Experimental study of sloshing noise in a partially filled rectangular tank under periodic excitation pp.2041-2991, 2018, https://doi.org/10.1177/0954407018809300
- Viscous Regularization of Breaking Faraday Waves vol.107, pp.11, 2018, https://doi.org/10.1134/S0021364018110061
- Experimental investigation of the sloshing motion of the water free surface in the draft tube of a Francis turbine operating in synchronous condenser mode vol.59, pp.6, 2018, https://doi.org/10.1007/s00348-018-2552-x
- Investigation of the Equivalent Test Condition for the Seismic Safety Assessment of a Spent Fuel Pool with regard to Sloshing Behavior vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/1418265
- Free and Forced Oscillations of Magnetic Liquids Under Low-Gravity Conditions vol.87, pp.2, 2020, https://doi.org/10.1115/1.4045620
- Modeling Transient Liquid Slosh Behavior at Variable Operating Speeds Induced by Intermittent Motions in Packaging Machines vol.10, pp.5, 2020, https://doi.org/10.3390/app10051859
- Assessment of breaking waves and liquid sloshing impact vol.100, pp.3, 2011, https://doi.org/10.1007/s11071-020-05605-7
- Fluid Pressure Response of Steel Water Tanks Accounting for the Effect of Vertical Ground Motion vol.32, pp.3, 2011, https://doi.org/10.7781/kjoss.2020.32.3.149
- Nonlinear response of acid storage tank coupled with piping attachment under seismic load for optimal safe design vol.18, pp.1, 2021, https://doi.org/10.1590/1679-78256301
- Fatigue life and effect of sloshing according to the scale ratio of a prismatic LNG tank vol.35, pp.2, 2021, https://doi.org/10.1007/s12206-021-0109-z
- Sessile liquid drops damp vibrating structures vol.33, pp.6, 2011, https://doi.org/10.1063/5.0055382