DOI QR코드

DOI QR Code

Modeling of continuous diffusion dialysis of aqueous solutions of sulphuric acid and nickel sulphate

  • Bendova, Helena (Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice) ;
  • Palaty, Zdenek (Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice)
  • Received : 2011.02.22
  • Accepted : 2011.10.05
  • Published : 2011.10.25

Abstract

At steady state, the simultaneous transport of sulphuric acid and nickel sulphate through an anion-exchange membrane Neosepta-AFN (Astom Corporation, Tokyo, Japan) was investigated in a two-compartment counter-current dialyzer with single passes. The transport was quantified by the recovery yield of acid, rejection of salt and four phenomenological coefficients, which were correlated with the acid and salt concentrations in the feed. The phenomenological coefficients were determined by the numerical integration of the basic differential equations describing the concentration profiles of the components in the dialyzer. This integration was combined with an optimizing procedure. The experiments proved that the acid recovery yield is in the limits from 63 to 91 %, while salt rejection is in the limits from 79 to 97 % in the dependence on the volumetric liquid flow rate and composition of the feed.

Keywords

References

  1. Andrussow, L. and Schramm, B. (1969), "Transport phanomene (Viskozitat und diffusion)", 6. Auflage II. Band, Teil 5, Bandteil a, Numerical data and functional relationships in science and technology: nuclear physics and technology, Springer, Berlin.
  2. Elmidaoui, A., Cherif, A.T., Molenat, J. and Gavach, C. (1995), "Transfer of $H_{2}SO_{4}$, $Na_{2}SO_{4}$ and $ZnSO_{4}$ by dialysis through an anion exchange membrane", Deasalination, 101(1), 39-46. https://doi.org/10.1016/0011-9164(95)00006-N
  3. Jeong, J., Kim, M.S., Kim, B.S., Kim, S.K., Kim, W.B. and Lee J.C. (2005), "Recovery of $H_{2}SO_{4}$ from waste acid solution by a diffusion dialysis method", J. Hazard Mater. 124(1-3), 230-235. https://doi.org/10.1016/j.jhazmat.2005.05.005
  4. Luo, J.Y., Wu, C.M., Wu, Y.H. and Xu, T.W. (2010), "Diffusion dialysis of hydrochloric acid at different temperatures using PPO-$SiO_{2}$ hybrid anion-exchange membranes", J. Membrane Sci., 347(1-2), 240-249. https://doi.org/10.1016/j.memsci.2009.10.029
  5. Luo, J.Y., Wu, C.M., Wu, Y.H. and Xu, T.W. (2011a), "Diffusion dialysis process of inorganic acids and their salts: The permeability of different acidic anions", Sep. Purif. Technol., 78(1), 97-102. https://doi.org/10.1016/j.seppur.2011.01.028
  6. Luo, J.Y., Wu, C.M., Xu, T.W. and Wu, Y.H. (2011b), " Diffusion dialysis - concept, principle and applications", J. Membrane Sci., 366(1-2), 1-16. https://doi.org/10.1016/j.memsci.2010.10.028
  7. Nar bska, A. and Staniszewski, M. (1997), "Separation of fermentation products by membrane techniques. I. Separation of lactic acid/lactates by diffusion dialysis", Sep. Sci. Technol., 32(10), 1669-1682. https://doi.org/10.1080/01496399708000727
  8. Nar bska, A. and Staniszewski, M. (2008), "Separation of carboxylic acids from carboxylates by diffusion dialysis", Sep. Sci. Technol., 43(3), 490-501. https://doi.org/10.1080/01496390701787388
  9. Nar bska, A. and Warszawski, A. (1992), "Effect of membrane composition on acid/salt separation", Sep. Sci. Technol., 27(6), 703-715. https://doi.org/10.1080/01496399208019719
  10. Oh, S.J., Moon, S.H. and Davis T. (2000), "Effects of metal ions on diffusion dialysis of inorganic acids", J. Membrane Sci., 169(1), 95-105. https://doi.org/10.1016/S0376-7388(99)00333-6
  11. Palaty, Z. and Bendova, H. (2009), "Separation of HCl + $FeCl_{2}$ mixture by anion-exchange membrane", Sep. Purif. Technol., 66(1), 45-50. https://doi.org/10.1016/j.seppur.2008.11.026
  12. Palaty, Z. and Bendova, H. (2011a), "Continuous dialysis of sulphuric acid and magnesium sulphate", Sep. Purif. Technol., 76(3), 400-406. https://doi.org/10.1016/j.seppur.2010.11.011
  13. Palaty, Z. and Bendova, H. (2011b), "Continuous dialysis of sulphuric acid in the presence of zinc sulphate", Chem. Papers, 65(2), 400-406.
  14. Palaty, Z. and Bendova, H. (2011c), "Transport of nitric acid through anion-exchange membrane in the presence of sodium nitrate", J. Membrane Sci., 372(1-2), 277-284. https://doi.org/10.1016/j.memsci.2011.02.006
  15. Palaty, Z. and Zakova, A. (2004a), "Separation of $H_{2}SO_{4}$ + $CuSO_{4}$ mixture by diffusion dialysis", J. Hazard. Mater., 114(1-3), 69-74. https://doi.org/10.1016/j.jhazmat.2004.06.023
  16. Palaty, Z. and Zakova, A. (2004b), "Separation of $H_{2}SO_{4}$ + $ZnSO_{4}$ mixture by diffusion dialysis", Desalination, 169(3), 277-285. https://doi.org/10.1016/j.desa1.2004.01.001
  17. Palaty, Z. and Zakova, A. (2006), "Competitive transport of hydrochloric acid and zinc chloride through polymeric anion-exchange membrane", J. Appl. Polymer Sci., 101(3), 1391-1397. https://doi.org/10.1002/app.22748
  18. Palaty, Z. and Zakova, A. (2007), "Separation of HCl + $NiCl_{2}$ mixture by diffusion dialysis", Sep. Sci. Technol., 42(9), 1965-1983. https://doi.org/10.1080/15363830701313362
  19. Palaty, Z., Zakova A. and Prchal, P. (2007), "Continuous dialysis of carboxylic acids. Permeability of anionexchange membrane Neosepta-AMH", Desalination, 216(1-3), 345-355. https://doi.org/10.1016/j.desal.2006.09.029
  20. Palaty Z., Zakova A., Sto ek P., Bendova H. (2008), "Continuous dialysis of citric acid. Solubility and diffusivity in Neosepta-AMH membrane", Chem. Biochem. Eng. Q., 22(2), 169-177.
  21. Wei, C., Li, X.B., Deng, Z.G., Fan, G., Li, M.T. and Li, C.X. (2010), "Recovery of $H_{2}SO_{4}$ from an acid leach solution by diffusion dialysis", J. Hazard. Mater., 176(1-3), 226-230. https://doi.org/10.1016/j.jhazmat.2009.11.017
  22. Xu, J., Fu, D. and Lu, S.G. (2009a), "The recovery of sulphuric acid from the waste anodic aluminium oxidation solution by diffusion dialysis", Sep. Purif. Technol., 69(2), 168-173. https://doi.org/10.1016/j.seppur.2009.07.015
  23. Xu, J., Fu, D. and Lu, S.G. (2009b), "Recovery of hydrochloric acid from the waste acid solution by diffusion dialysis", J. Hazard. Mater., 165(1-3), 832-837. https://doi.org/10.1016/j.jhazmat.2008.10.064
  24. Xu, T.W. and Yang, W.H. (2001), "Sulfuric acid recovery from titanium white (pigment) waste liquor using diffusion dialysis with a new series of anion-exchange membranes - static runs", J. Membrane Sci., 183(2), 193-200. https://doi.org/10.1016/S0376-7388(00)00590-1
  25. Xu, T.W. and Yang, W.H. (2003), "Industrial recovery of mixed acid (HF + $HNO_{3}$) from the titanium spent leaching solutions by diffusion dialysis with a new series of anion-exchange membranes", J. Membrane Sci., 220(1-2), 89-95. https://doi.org/10.1016/S0376-7388(03)00218-7
  26. Xu, T.W. and Yang, W.H. (2004), "Tuning the diffusion dialysis performance by surface cross-linking of PPO anion-exchange membranes - simultaneous recovery of sulfuric acid and nickel from electrolysis stent liquor of relatively low acid concentration", J. Hazard. Mater., 109(1-3), 157-164. https://doi.org/10.1016/j.jhazmat.2004.03.016

Cited by

  1. Application of diffusion dialysis in hydrometallurgical separation of nickel from spent Raney Ni catalyst 2017, https://doi.org/10.1080/01496395.2017.1329839
  2. Continuous dialysis of sulphuric acid and sodium sulphate mixture vol.497, 2016, https://doi.org/10.1016/j.memsci.2015.07.017
  3. Continuous dialysis of hydrochloric acid and lithium chloride: permeability of anion-exchange membrane to chloride ions 2018, https://doi.org/10.1007/s11696-017-0379-1
  4. Diffusion dialysis for the treatment of H2SO4-CuSO4 solutions from electroplating plants: Ions membrane transport characterization and modelling vol.266, pp.None, 2011, https://doi.org/10.1016/j.seppur.2020.118215