DOI QR코드

DOI QR Code

Recent progress in supported liquid membrane technology: stabilization and feasible applications

  • Molinari, Raffaele (Department of Chemical Engineering and Materials, University of Calabria Via P. Bucci) ;
  • Argurio, Pietro (Department of Chemical Engineering and Materials, University of Calabria Via P. Bucci)
  • Received : 2011.06.01
  • Accepted : 2011.08.10
  • Published : 2011.10.25

Abstract

Supported Liquid Membranes (SLMs) have been widely studied as feasible alternative to traditional processes for separation and purification of various chemicals both from aqueous and organic matrices. This technique offers various advantages like active transport, possibility to use expensive extractants, high selectivity, low energy requirements and minimization of chemical additives. SLMs are not yet used at large scale in industrial applications, because of the low stability. In the present paper, after a brief overview of the state of the art of SLM technology the facilitated transport mechanisms of SLM based separation is described, also introducing the small and the big carrousel models, which are employed for transport modeling. The main operating parameters (selectivity, flux and permeability) are introduced. The problems related to system stabilization are also discussed, giving particular attention to the influence of membrane materials (solid membrane support and organic liquid membrane (LM) phase). Various approaches proposed in literature to enhance SLM stability are also reviewed. Modification of the solid membrane support, creating an additional layer on membrane surface, which acts as a barrier to LM phase loss, increases system stability, but the membrane permeability, and then the flux, decrease. Stagnant Sandwich Liquid Membrane (SSwLM), an implementation of the SLM system, results in both high flux and stability compared to SLM. Finally, possible large scale applications of SLMs are also reviewed, evidencing that if the LM separation process is opportunely carried out (no production of byproducts), it can be considered as a green process.

Keywords

References

  1. Altin, S., Yildirim, Y. and Altin, A. (2010), "Transport of silver ions through a flat-sheet supported liquid membrane", Hydrometallurgy, 103(1-4), 144-149. https://doi.org/10.1016/j.hydromet.2010.03.015
  2. Ansari, S.A., Mohapatra, P.K., Prabhu, D.R. and Manchanda, V.K. (2007), "Evaluation of N,N,N',N'-tetraoctyl-3-oxapentane-diamide (TODGA) as a mobile carrier in remediation of nuclear waste using supported liquid membrane", J. Membrane Sci., 298(1-2), 169-174. https://doi.org/10.1016/j.memsci.2007.04.015
  3. Ata, O.N. (2007), "Mathematical modelling of unsteady-state transport of metal ions through supported liquid membrane", Hydrometallurgy, 87(3-4), 148-156. https://doi.org/10.1016/j.hydromet.2007.02.008
  4. Chaudry, M.A., Bukhari, N. and Mazhar, M. (2008), "Coupled transport of Ag(I) ions through triethanolamine- cyclohexanone-based supported liquid membranes", J. Membrane Sci., 320(1-2), 93-100. https://doi.org/10.1016/j.memsci.2008.03.036
  5. Chimuka, L., Cukrowska, E. and Jonsson, J.A. (2004), "Why liquid membrane extraction is an attractive alternative in sample preparation", Pure Appl. Chem., 76(4), 707-722. https://doi.org/10.1351/pac200476040707
  6. Chimuka, L., Msagati, T.A.M., Cukrowska, E. and Tutu, H. (2010), "Critical parameters in a supported liquid membrane extraction technique for ionizable organic compounds with a stagnant acceptor phase", J. Chromatogr. A, 1217(16), 2318-2325. https://doi.org/10.1016/j.chroma.2010.01.004
  7. Danesi, P.R., Reichley-Yinger, L. and Rickert, P.G. (1987), "Lifetime of supported liquid membranes: the influence of interfacial properties, chemical composition and water transport on the long term stability of the membranes", J. Membrane Sci., 31(2-3), 117-145. https://doi.org/10.1016/S0376-7388(00)82223-1
  8. de los Rios, A.P., Hernandez-Fernandez, F.J., Tomas-Alonso, F., Palacios, J.M., Gomez, D., Rubio, M. and Villora G. (2007), "A SEM-EDX study of highly stable supported liquid membranes based on ionic liquids", J. Membrane Sci., 300(1-2), 88-94. https://doi.org/10.1016/j.memsci.2007.05.010
  9. Es'haghi, Z. and Azmoodeh, R. (2010), "Hollow fiber supported liquid membrane microextraction of $Cu^{2+}$ followed by flame atomic adsorption spectroscopy determination", Arab. J. Chem., 3(1), 21-26. https://doi.org/10.1016/j.arabjc.2009.12.004
  10. Guell, R., Fontas, C., Salvado, V. and Antico, E. (2010), "Modelling of liquid-liquid extraction and liquid membrane separation of arsenic species in environmental matrices", Sep. Purif. Technol., 72(3), 319-325. https://doi.org/10.1016/j.seppur.2010.02.023
  11. Hassoune, H., Rhlalou, T. and Verchere, J.F. (2009), "Mechanism of transport of sugars across a supported liquid membrane using methyl cholate as mobile carrier", Desalination, 242(1-3), 84-95. https://doi.org/10.1016/j.desal.2008.03.033
  12. He, T. (2008), "Towards stabilization of supported liquid membranes: preparation and characterization of polysulfone support and sulfonated poly (ether ether ketone) coated composite hollow fiber membranes", Desalination, 225(1-3), 82-94. https://doi.org/10.1016/j.desal.2007.04.090
  13. Hernandez-Fernandez, F.J., de los Rios, A.P., Rubio, M., Tomas-Alonso, F., Gomez, D. and Villora, G. (2007), "A novel application of supported liquid membranes based on ionic liquids to the selective simultaneous separation of the substrates and products of a transesterification reaction", J. Membrane Sci., 293(1-2), 73-80. https://doi.org/10.1016/j.memsci.2007.01.037
  14. Hill, C., Dozol, J.F., Rouquette, H., Eymard, S. and Tournois, B. (1996), "Study of the stability of some supported liquid membranes", J. Membrane Sci., 114(1), 73-80. https://doi.org/10.1016/0376-7388(95)00306-1
  15. Kemperman, A.J.B., Bargeman, D., van den Boomgaard, Th. and Strathmann, H. (1996), "Stability of supported liquid membranes: state of the art", Sep. Sci. Technol., 31(20), 2733-2762. https://doi.org/10.1080/01496399608000824
  16. Kemperman, A.J.B., Damink, B., van den Boomgaard, Th. and Strathmann, H. (1997), "Stabilization of supported liquid membranes by gelation with PVC", J. Appl. Polym. Sci., 65(6), 1205-1216. https://doi.org/10.1002/(SICI)1097-4628(19970808)65:6<1205::AID-APP16>3.0.CO;2-S
  17. Kemperman, A.J.B., Rolevink, H.H.M., Bargeman, D., van den Boomgaard, Th. and Strathmann, H. (1998), "Stabilization of supported liquid membranes by interfacial polymerization top layers", J. Membrane Sci., 138(1), 43-55. https://doi.org/10.1016/S0376-7388(97)00202-0
  18. Kislik, V.S. and Eyal, A.M. (1996), "Hybrid liquid membrane (HLM) and supported liquid membrane (SLM) based transport of titanium(IV)", J. Membrane Sci., 111(2), 273-281. https://doi.org/10.1016/0376-7388(95)00257-X
  19. Kislik, V.S. and Eyal, A.M. (2000), "Aqueous hybrid liquid membrane process for metal separation. Part II. Selectivity of metals separation from wet-process phosphoric acid", J. Membrane Sci., 169(1), 133-146. https://doi.org/10.1016/S0376-7388(99)00332-4
  20. Kocherginsky, N.M., Yang, Q. and Seelam, L. (2007a), "Recent advances in supported liquid membrane technology", Sep. Purif. Technol., 53(2), 171-177. https://doi.org/10.1016/j.seppur.2006.06.022
  21. Kocherginsky, N.M. and Yang, Q. (2007b), "Big Carrousel mechanism of copper removal from ammoniacal wastewater through supported liquid membrane", Sep. Purif. Technol., 54(1), 104-116. https://doi.org/10.1016/j.seppur.2006.08.019
  22. LeBlanc, O.H. (1971), "The effect of uncouplers of oxidative phosphorylation on lipid bilayer membranes: carbonylcyanidem-chlorophenylhydrazone", J. Membrane Biol., 4(1), 227-251. https://doi.org/10.1007/BF02431973
  23. Ma, J.M., Cai, L.L., Zhang, B.J., Hu L.W., Li, X.Y. and Wang, J.J. (2010), "Acute toxicity and effects of 1-alkyl-3-methylimidazolium bromide ionic liquids on green algae", Ecotox. Environ. Safe., 73(6), 1465-1469. https://doi.org/10.1016/j.ecoenv.2009.10.004
  24. Matsumoto, M., Ohtani, T. and Kondo, K. (2007), "Comparison of solvent extraction and supported liquid membrane permeation using an ionic liquid for concentrating penicillin G", J. Membrane Sci., 289(1-2), 92-96. https://doi.org/10.1016/j.memsci.2006.11.046
  25. Molinari, R., Pirillo, F. and Argurio, P. (2002), "Sandwich liquid membrane in the separation and concentration of $Cu^{2+}$, Ann. Chim. (Rome, Italy), 92(10), 973-982.
  26. Molinari, R., Argurio, P. and Pirillo, F. (2005), "Comparison between stagnant sandwich and supported liquid membranes in copper(II) removal from aqueous solutions: flux, stability and model elaboration", J. Membrane Sci., 256(1-2), 158-168. https://doi.org/10.1016/j.memsci.2005.02.015
  27. Molinari, R., Caruso, A., Argurio, P. and Poerio, T. (2006a), "Diclofenac Transport through Stagnant Sandwich and Supported Liquid Membrane Systems", Ind. Eng. Chem. Res., 45(26), 9115-9121. https://doi.org/10.1021/ie0607088
  28. Molinari, R., Poerio, T. and Argurio, P. (2006b), "Selective removal of $Cu^{2+}$ versus $Ni^{2+}$, $Zn^{2+}$ and $Mn^{2+}$ by using a new carrier in a supported liquid membrane", J. Membrane Sci., 280(1-2), 470-477. https://doi.org/10.1016/j.memsci.2006.02.002
  29. Molinari, R., Argurio, P. and Poerio, T. (2009a), "Studies of various solid membrane supports to prepare stable sandwich liquid membranes and testing copper(II) removal from aqueous media", Sep. Purif. Technol., 70(2), 166-172. https://doi.org/10.1016/j.seppur.2009.09.012
  30. Molinari, R., Argurio, P. and Poerio, T. (2009b), "Flux enhancement of stagnant sandwich compared to supported liquid membrane systems in the removal of Gemfibrozil from waters", J. Membrane Sci., 340(1-2), 26-34. https://doi.org/10.1016/j.memsci.2009.05.012
  31. Muthuraman, G. and Palanivelu, K. (2006), "Transport of textile dye in vegetable oils based supported liquid membrane", Dyes Pigments, 70(2), 99-104. https://doi.org/10.1016/j.dyepig.2005.05.002
  32. Neplenbroek, A.M., Bargeman, D. and Smolders, C.A. (1992a), "Mechanism of supported liquid membrane degradation-emulsion formation", J. Membrane Sci., 67(2-3), 133-148. https://doi.org/10.1016/0376-7388(92)80021-B
  33. Neplenbroek, A.M., Bargeman, D. and Smolders, C.A. (1992b), "Supported liquid membranes-stabilization by gelation", J. Membrane Sci., 67(2-3), 149-165. https://doi.org/10.1016/0376-7388(92)80022-C
  34. Pham, T.P.T., Cho, C.W. and Yun, Y.S. (2010), "Environmental fate and toxicity of ionic liquids: A review", Water Res., 44(2), 352-372. https://doi.org/10.1016/j.watres.2009.09.030
  35. Ravanchi, M.T., Kaghazchi, T. and Kargari, A. (2010), "Facilitated transport separation of propylene-propane: Experimental and modeling study", Chem. Eng. Process., 49(3), 235-244. https://doi.org/10.1016/j.cep.2010.01.011
  36. See, H.H., Hauser, P.C., Sanagi, M.M. and Ibrahim, W.A.W. (2010), "Dynamic supported liquid membrane tip extraction of glyphosate and aminomethylphosphonic acid followed by capillary electrophoresis with contactless conductivity detection", J. Chromatogr. A, 1217(37), 5832-5838. https://doi.org/10.1016/j.chroma.2010.07.054
  37. Singh, S.K., Misra, S.K., Tripathi, S.C. and Singh, D.K. (2010), "Studies on permeation of uranium (VI) from phosphoric acid medium through supported liquid membrane comprising a binary mixture of PC88A and Cyanex 923 in n-dodecane as carrier", Desalination, 250(1), 19-25. https://doi.org/10.1016/j.desal.2009.06.067
  38. Takeuchi, H., Takahashi, K. and Goto, W. (1987), "Some observations on the stability of supported liquid membranes", J. Membrane Sci., 34(1), 19-31. https://doi.org/10.1016/S0376-7388(00)80018-6
  39. Tarditi, A.M., Marchese, J. and Campderros, M.E. (2008), "Modelling of zinc (II) transport through a PC-88A supported liquid membrane", Desalination, 228(1-3), 226-236. https://doi.org/10.1016/j.desal.2007.10.011
  40. Venkateswaran, P. and Palanivelu, K. (2006), "Recovery of phenol from aqueous solution by supported liquid membrane using vegetable oils as liquid membrane", J. Hazard. Mater., 131(1-3), 146-152. https://doi.org/10.1016/j.jhazmat.2005.09.025
  41. Yang, Q. and Chung, T.S. (2006), "Modification of the commercial carrier in supported liquid membrane system to enhance lactic acid flux and to separate l,d-lactic acid enantiomers", J. Membrane Sci., 294(1-2), 127-131.
  42. Yang, Q., Chung, T.S., Xiao, Y. and Wang, K. (2007), "The development of chemically modified P84 copolyimide membranes as supported liquid membrane matrix for Cu(II) removal with prolonged stability", Chem. Eng. Sci., 62(6), 1721-1729. https://doi.org/10.1016/j.ces.2006.12.022
  43. Yang, Q. and Kocherginsky, N.M. (2007), "Copper removal from ammoniacal wastewater through a hollow fiber supported liquid membrane system: Modeling and experimental verification", J. Membrane Sci., 297(1-2), 121-129. https://doi.org/10.1016/j.memsci.2007.03.036
  44. Yang, X.J. and Fane, T. (1997), "Effect of membrane preparation on the lifetime of supported liquid membranes", J. Membrane Sci., 133(2), 269-273. https://doi.org/10.1016/S0376-7388(97)00083-5
  45. Wang, H., Malhotra, S.V. and Francis A.J. (2011), "Toxicity of various anions associated with methoxyethyl methyl imidazolium-based ionic liquids on Clostridium sp.", Chemosphere, 82(11), 1597-1603. https://doi.org/10.1016/j.chemosphere.2010.11.049
  46. Zha, F.F., Fane, A.G. and Fell, C.J.D. (1995), "Instability mechanisms of supported liquid membranes in phenol transport process", J. Membrane Sci., 107(1-2), 59-74. https://doi.org/10.1016/0376-7388(95)00104-K
  47. Zhang, B., Gozzelino, G. and Baldi, G. (2001), "Membrane liquid loss of supported liquid membrane based on ndecanol", Colloid. Surfaces A, 193(1-3), 61-70. https://doi.org/10.1016/S0927-7757(01)00688-4
  48. Zhu, G. and Li, B. (1990), "A study of water uptake in supported liquid membranes", Water Treatment, 5, 150-156.
  49. Zidi, C., Tayeb, R., Ali, M.B.S. and Dhahbi M. (2010), "Liquid-liquid extraction and transport across supported liquid membrane of phenol using tributyl phosphate", J. Membrane Sci., 360(1-2), 334-340. https://doi.org/10.1016/j.memsci.2010.05.027

Cited by

  1. PVDF/h-BN hybrid membranes and their application in desalination through AGMD vol.9, pp.4, 2011, https://doi.org/10.12989/mwt.2018.9.4.221