References
- Cagle, D.W., Kennel, S.J., Mirzadeh, S., Alford, J.M. and Wilson, L.J. (1999), "In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers", Proceedings of the National Academy of Sciences of the United States of America, 96(9), 5182-5187. https://doi.org/10.1073/pnas.96.9.5182
- Chen, C.C., Kelty, S.P., et al. (1991), "(RbxK1-x)3C60 superconductors: formation of a continuous series of solid solutions", Science, 253(5022), 886-888. https://doi.org/10.1126/science.253.5022.886
- Chen, H.Y., Liu, Z.F., Gong, X.G. and Sun, D.Y. (2011), "Design of a one-way nanovalve based on carbon nanotube junction and C-60", Microfluid. Nanofluid., 10(4), 927-933. https://doi.org/10.1007/s10404-010-0719-8
- Dong, L., Nelson, B.J., Fukuda, T. and Arai, F. (2006), "Towards nanotube linear servomotors", IEEE T. Autom. Sci. Eng., 3(3), 228-235. https://doi.org/10.1109/TASE.2006.875551
- Eleanor, E.B.C. and Frank, R. (2000), "Fullerene reactions", Rep. Prog. Phys., 63(7), 1061. https://doi.org/10.1088/0034-4885/63/7/202
- Erkoc, S. (2002), "Stability of carbon nanoonion C-20@C-60@C-240: molecular dynamics simulations", Nano Lett., 2(3), 215-217. https://doi.org/10.1021/nl0100825
- Fleishman, D., Klafter, J., Porto, M. and Urbakh, M. (2007), "Mesoscale engines by nonlinear friction", Nano Lett., 7(3), 837-842. https://doi.org/10.1021/nl070003a
- Hebard, A.F., Rosseinsky, M.J., Haddon, R.C., Murphy, D.W., Glarum, S.H., Palstra, T.T.M., Ramirez, A.P. and Kortan, A.R. (1991), "Superconductivity at 18 K in potassium-doped C60", Nature, 350(6319), 600-601. https://doi.org/10.1038/350600a0
- Kim, P., Shi, L., Majumdar, A. and McEuen, P.L. (2001), "Thermal transport measurements of individual multiwalled nanotubes", Phys. Rev. Lett., 87(21), 215502. https://doi.org/10.1103/PhysRevLett.87.215502
- Kral, P. and Sadeghpour, H.R. (2002). "Laser spinning of nanotubes: a path to fast-rotating microdevices", Phys. Rev. B., 65(16), 161401. https://doi.org/10.1103/PhysRevB.65.161401
- Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F. and Smalley, R.E. (1985), "C60: buckminsterfullerene", Nature, 318(6042), 162-163. https://doi.org/10.1038/318162a0
- Lifshitz, C. (2000), "Carbon clusters", Int. J. Mass Spectrom., 200(1-3), 423-442. https://doi.org/10.1016/S1387-3806(00)00350-X
- Neto, A.M.J.C. and Oliveira, C.X. (2010), "Nanoscillator and gun under temperature effect", J. Nanosci. Nanotechnol., 10(9), 5755-5758. https://doi.org/10.1166/jnn.2010.2466
- Noon, W.H., Kong, Y.F. and Ma, J. (2002), "Molecular dynamics analysis of a buckyball-antibody complex", Proceedings of the National Academy of Sciences of the United States of America, 99, 6466-6470. https://doi.org/10.1073/pnas.022532599
- Pop, E., Mann, D., Wang, Q., Goodson, K. and Dai, H. (2006), "Thermal conductance of an individual singlewall carbon nanotube above room temperature", Nano Lett., 6(1), 96-100. https://doi.org/10.1021/nl052145f
- Rosseinsky, M.J. Ramirez, A.P., Glarum, S.H., Murphy, D.W., Haddon, R.C., Hebard, A.F., Palstra, T.T.M., Kortan, A.R., Zahurak, S.M. and Makhija, A.V. (1991), "Superconductivity at 28 K in Rb_{x}C_{60} ", Phys. Rev. Lett., 66(21), 2830. https://doi.org/10.1103/PhysRevLett.66.2830
- Sazonova, V., Yaish, Y., Ustunel, H., Roundy, D., Arias, T.A. and McEuen, P.L. (2004), "A tunable carbon nanotube electromechanical oscillator", Nature, 431(7006), 284-287. https://doi.org/10.1038/nature02905
- Scuseria, G.E. (1996), "Ab initio calculations of fullerenes", Science, 271(5251), 942-945. https://doi.org/10.1126/science.271.5251.942
- Tersoff, J. (1989), "Modeling solid-state chemistry: interatomic potentials for multicomponent systems", Phys. Rev. B., 39(8), 5566-5568. https://doi.org/10.1103/PhysRevB.39.5566
- Weast, R.C. (1988), CRC handbook of chemistry and physics, Boca Raton, FL, CRC Press.
- Wilson, L.J., Cagle, D.W., Thrash, T.P., Kennel, S.J., Mirzadeh, S., Alford, J.M. and Ehrhardt, G.J. (1999), "Metallofullerene drug design", Coordin. Chem. Rev., 190-192, 199-207. https://doi.org/10.1016/S0010-8545(99)00080-6
- Xu, Z.P., Zheng, Q.S. and Chen, G. (2007), "Thermally driven large-amplitude fluctuations in carbon-nanotubebased devices: molecular dynamics simulations", Phys. Rev. B., 75(19), 195445. https://doi.org/10.1103/PhysRevB.75.195445
Cited by
- Molecular dynamics studies of interaction between hydrogenand carbon nano-carriers vol.6, pp.3, 2013, https://doi.org/10.12989/imm.2013.6.3.271
- Molecular dynamics studies of interaction between hydrogenand carbon nano-carriers vol.3, pp.4, 2014, https://doi.org/10.12989/csm.2014.3.4.329
- Mechanical properties of bulk carbon nanostructures: effect of loading and temperature vol.16, pp.36, 2014, https://doi.org/10.1039/C4CP01952K
- ABC optimization of TMD parameters for tall buildings with soil structure interaction vol.6, pp.4, 2013, https://doi.org/10.12989/imm.2013.6.4.339